Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists ID molecular block for social ’cheaters’

07.10.2004


Social cooperation is one of the most difficult adaptations for evolutionary biologists to explain because competition for resources inside the collective should lead to evolved traits that allow individuals to "cheat" the collective, win more resources and reproduce faster than their more cooperative neighbors -- thus undermining the social collective. In new research, evolutionary biologists and geneticists at Rice University and Baylor College of Medicine have isolated a genetic mechanism that counters competitive pressures and stabilizes cooperation. Their research appears in the Oct. 7 issue of the journal Nature.



Using the latest tools of molecular genetics, the researchers found that the phenomenon known as pleiotropy -- which occurs when a gene affects more than one inherited trait -- plays a crucial role in preventing "cheaters" from exploiting their neighbors within slime mold colonies that are formed by the social amoeba Dictyostelium discoideum. "What we’ve found is a molecular block to cheating and the genetic mechanism it relies on-- tying cooperative genes tightly with the essential function of reproduction," said paper co-author Joan Strassmann, professor of ecology and evolutionary biology at Rice. "Such a mechanism makes the loss of social genes costly to cheaters, and we believe this pleiotropic mechanism may be indicative of a general mechanism that’s employed in many species to stabilize cooperation."

The Rice-Baylor experiments draw upon one of the most extraordinary examples of social cooperation among microorganisms: when slime mold amoebae run out of the bacteria they eat, they group, then form a fruiting body in which about one-fifth of the single-celled individuals within the colony sacrifice themselves to form the stalk that holds up the spores. Before forming a stalk, the colony goes through a stage where it forms a slug-like structure. During this stage, cells produce a signaling molecule called DIF-1 that causes some members of the colony to differentiate themselves from the rest of the group and enter a prestalk stage of development. Using biotechnology, the research team created a mutant strain of Dictyostelium without the gene dimA, which codes for a key protein that Dictyostelium cells use to recognize DIF-1. "We wanted to see if cells without dimA could cheat the system by ignoring DIF-1 and thereby increase their chances of becoming spore cells rather than stalk cells," said paper co-author David Queller, professor of ecology and evolutionary biology at Rice. "We created colonies that contained roughly a 50-50 mix of our mutants and wild type strains of Dictyostelium, As expected, the dimA knockouts -- the cheaters -- were predisposed to move to the back of the slug, the position occupied by cells in the prespore stage of development."


But despite this advantage during stalk development, the cheaters were far less likely than their native counterparts to make it into the actual spores atop the stalk, a finding that surprised the entire research team. The researchers conducted a series of tests to determine whether the dimA mutants had an unexpected competitive disadvantage that was skewing the results of the experiment. One of those tests involved looking for a marker gene expressed only in prestalk cells. Using this marker gene, they determined that many cells in the spores were wild type cells that were initially tagged to become stalk cells. These cells underwent a late-stage developmental about-face and supplanted dimA knockout cells that were initially targeted to become spores.

"This test confirmed that the dimA gene was essential not only for DIF-1 recognition but also for spore production," said paper co-author Gad Shaulsky, associate professor of molecular and human genetics at Baylor College of Medicine. "We don’t know the precise biomolecular pathway for this second function, but we know that dimA codes for a transcription factor that binds with DNA in the nucleus to control gene expression. Because transcription factors often control more than one gene, we believe the absence of dimA may be interfering with an unknown recognition pathway that is essential for spore selection."

The results are the first published by a unique Rice-Baylor collaborative that won $5 million from the National Science Foundation last year to apply the latest techniques of modern molecular genetics and large-scale genomics to the study of social evolution. The project was one of the first funded by the NSF’s new Frontiers in Integrated Biological Research program.

Other co-authors on the paper, "Pleiotropy as a mechanism to stabilize cooperation," are Kevin Foster, a former Huxley Fellow in ecology and evolutionary biology at Rice who is now a Fellow at the Wissenschaftkolleg in Berlin, and Chris Thompson, a former post-doctoral researcher at Baylor College of Medicine who is now at The University of Manchester.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>