Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dying cells encourage neighbors to grow

06.10.2004


Researchers from The Rockefeller University have uncovered specific mechanisms by which cells that are genetically programmed to commit suicide stimulate growth in surrounding cells. The research, published online in Developmental Cell, provides new information about how normal, healthy tissues are maintained and may shed some light on a pathway that may contribute to tumor growth.



It has been known for some time that cells that die as a result of injury-provoked programmed cell death, also known as apoptosis, may stimulate the growth of surrounding cells. "Such compensatory mechanisms may be essential to allow for the elimination of as many damaged or dangerous cells as needed without compromising organismal fitness. In spite of its importance, the underlying mechanisms are poorly understood," explains study leader Dr. Hermann Steller.

Dr. Steller and colleagues demonstrate that when cells from the imaginal disc in the fruit fly Drosophila are stimulated to undergo apoptosis but experimentally manipulated so that they do not actually die ("undead cells"), they stimulate the growth of neighboring tissue. The researchers demonstrate that the undead cells promote cell growth in the surrounding imaginal disc by activating specific signaling cascades that are known to be required for cell proliferation. Although artificial, the experimental creation of undead cells allows this phenomenon to be expanded and studied. The authors provide evidence that apoptotic cells that are allowed to complete the process of dying also secrete the growth-stimulating signals.


The researchers conclude that apoptotic cells actively induce compensatory proliferation by activating growth-associated signaling pathways and secreting molecules that promote growth in surrounding tissues. They also suggest that abnormal regulation of apoptosis, as has been shown to be the case in some cancers, may result in pathological activation of these pathways. "Based on the behavior of undead cells in Drosophila imaginal discs, one might expect mutations that block or delay apoptosis to cause secondary proliferation and hyperplasia. It remains to be tested if such a mechanism contributes to hyperplasia in mouse models and human malignancies," offers Dr. Steller.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>