Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saliva samples offer potential alternative to blood testing

05.10.2004


Spitting into a cup or licking a diagnostic test strip could someday be an attractive alternative to having your blood drawn at the doctor’s office. Researchers have identified the largest number of proteins to date in human saliva, a preliminary finding that could pave the way for more diagnostic tests based on saliva samples. Such tests show promise as a faster, cheaper and potentially safer diagnostic method than blood sampling, they say.



“There is a growing interest in saliva as a diagnostic fluid, due to its relatively simple and minimally invasive collection,” says study leader Phillip A. Wilmarth, Ph.D., of Oregon Health & Science University School of Dentistry in Portland, Ore. “The same proteins present in blood are also present in saliva from fluid leakage at the gum line. It is considerably easier, safer and more economical to collect saliva than to draw blood, especially for children and elderly patients.”

The study of salivary proteins is described in the Oct. 11 print issue of the Journal of Proteome Research, a peer-reviewed publication of the American Chemical Society, the world’s largest scientific society.


While saliva tests won’t replace blood tests for all diagnostic applications, says Wilmarth, in the future they could prove to be a potentially life-saving alternative to detect diseases where early diagnosis is critical, such as certain cancers. Saliva collection also may be the only practical way to screen large numbers of patients in developing nations, the researcher adds.

Diagnostic assays using saliva are a relatively new but growing technology. This past spring, the FDA approved the first HIV test based on saliva rather than blood. Several other tests are in the pipeline for uses ranging from pregnancy testing to detection of chemicals such as alcohol and other drugs. One of the hurdles in developing new tests is a lack of understanding of the human proteome, or the study of large sets of proteins, particularly those that can serve as biomarkers for the presence of disease.

Most proteome studies have focused on specific tissues and human blood samples, but the current study represents one of only a few studies to date of the salivary proteome. “We’re just starting to map the saliva proteome,” Wilmarth says. “Not much is known yet, but more should be known in the near future.”

Using two-dimensional gel electrophoresis in combination with mass spectrometry, other researchers were able to identify up to 28 proteins in saliva, including 19 proteins only found in saliva and nine proteins also present in blood serum. The most important biomarkers for disease diagnosis are typically serum-derived proteins, the researcher adds.

In an effort to identify more serum proteins, which are a minor component of saliva, Wilmarth and his associates used a more sensitive analytical technique called two-dimensional liquid chromatography, combined with highly sensitive mass spectrometry. Using a single saliva sample from a healthy, nonsmoking male subject, the researchers were able to identify 102 proteins, including 35 salivary proteins and 67 common serum proteins. The study represents the first time the analytical technique has been applied to saliva, the researcher says.

“The number of serum proteins detected in this work is still far short of the number of proteins routinely seen in blood serum studies [800-1600 proteins], but it is a significant step toward identifying serum biomarkers in saliva,” Wilmarth says. Identifying all of the serum proteins present in saliva could take many more years, he estimates.

With advances in instrumentation, he predicts that the number of serum proteins identified in saliva will increase significantly, although it will probably never match the number found in blood, mainly because serum proteins are only a tiny part of saliva, described as a dilute, watery-solution containing electrolytes, minerals, buffers, as well as proteins.

Blood tests are a well-established, proven methodology, and it may take some time before saliva tests can become as reliable as serum tests, Wilmarth notes. “In the future, I think consumers can look forward to more saliva-based tests,” Wilmarth says. “It may make diagnostics as simple as licking the back of a test strip, mailing it in and getting your results. That’s a lot easier than getting stuck with needles and it’s potentially safer for health care workers.”

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>