Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Endangered frogs coexist with fungus once thought fatal

05.10.2004


Worldwide amphibian declines have reached crisis proportions. In many areas, habitat loss is the likely culprit but, in 1996, it was suggested that some unknown disease had spread through the populations. In 1998, the fungus Batrachochytrium dendrobatidis was identified from sick and dead frogs and, since then, several lines of laboratory based evidence have suggested that B. dendrobatidis is to blame for the dramatic frog declines. But with little information about how the disease impacts frogs in the wild, the causal role of this chytrid fungus remains unclear. In the open access journal PLoS Biology, Australian researchers Richard Retallick, Hamish McCallum and Rick Speare now "show unequivocally" that remaining populations of T. eungellensis, a rainforest frog listed as endangered, can persist in the wild with stable infections of this fungus.




To evaluate the effects of the fungus on frogs in their natural habitat, the authors focused on six species living in the high-elevation rainforest streams of Eungella National Park in Queensland, Australia, where frog losses were "particularly catastrophic". Two species vanished between 1985 and 1986: the Eungella Gastric-Brooding Frog (Rheobatrachus vitellinus), which is now thought extinct, and the Eungella Torrent Frog (Taudactylus eungellensis), which later reappeared in a few small populations. In the PLoS Biology study, Retallick et al. tested tissue samples taken from frogs between 1994 and 1998 - before the disease had been identified. The marked frogs were released back into the wild at the time the samples were collected. The authors found fungal infections in the samples of two species, including T. eungellensis. An analysis of tissue from recaptured frogs during the same period showed that the prevalence of infection did not vary from year to year, suggesting that the infection is now endemic. McCallum and colleagues also found no evidence that survival differed between infected and uninfected frogs, suggesting that this potentially devastating amphibian disease now coexists with the frogs, with little effect on their populations.

While these findings do not exonerate the fungus as the agent of mass declines, they can rule out the possibility that the fungus caused the decline, then vanished from the area, allowing frog populations to recover. Although it’s possible that B. dendrobatidis did not cause the initial T. eungellensis declines, surviving frog populations may have developed resistance to the pathogen, or less virulent strains of the fungus may have evolved. If it turns out that frog populations can develop resistance to the chytrid fungus, the researchers point out, then a conservation program of captive breeding and selecting for resistance could potentially thwart the extinction of these, and other, critically endangered frogs.

Paul Ocampo | EurekAlert!
Further information:
http://www.plos.org

More articles from Life Sciences:

nachricht Antibiotic resistances spread faster than so far thought
18.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht The Lypla1 Gene Impacts Obesity in a Sex-Specific Manner
18.02.2019 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>