Molecular motor implicated in tissue remodeling

A well-known enzyme present in the skin and other tissues turns out to be a molecule-sized motor that extracts its fuel from the road it runs on, according to researchers at Washington University School of Medicine in St. Louis. Their discovery appears in the Oct. 1 issue of Science.


The enzyme, MMP-1, is a member of a group of enzymes that breaks down collagen, a fibrous substance that constitutes the foundation of the extracellular matrix that supports the cells in the body’s tissues.

“By digesting collagen, enzymes such as MMP-1 initiate tissue remodeling, which can have a variety of purposes from organ development to tissue repair to metastatic invasion of tumors,” says senior author Gregory Goldberg, Ph.D., professor of dermatology and of biochemistry and molecular biophysics. “Because they participate in all basic tissue metabolism, we want to understand how they function.”

Goldberg and his colleagues Savees Saffarian, Ivan Collier, Barry Marmer and Elliot Elson found that MMP-1 operates as a molecular motor–a molecule that converts chemical energy into motion. “This is the only extracellular motor known,” says Elson, Ph.D., coauthor and professor of biochemistry and molecular biophysics.

The research team discovered that MMP-1 moves along a collagen filament with a net unidirectional motion. One-way motion indicates that energy is being utilized, so the team looked for an energy source.

While most molecules that act as motors are inside cells and get their energy from a ubiquitous high-energy molecule called ATP, the team found that MMP-1 gets its energy by breaking the molecular bonds in the collagen filament it is attached to. “In fact,” Goldberg says, “with our model, a whole new principle emerges in which molecular motors in the extracellular matrix operate by extracting energy from the very track they move upon.”

The researchers propose that the molecular motor contributes to restructuring the extracellular support matrix during tissue growth and development or wound repair or even during cancerous invasion of tissues. Because MMP-1 moves directionally, it can serve as a clutch, assisting cell locomotion along networks of collagen in tissues. Further, motion along the precisely aligned collagen filaments directs the proper development of individual tissue types.

The model of MMP-1 action revealed by Goldberg and his colleagues might help explain how the enzymes that digest collagen serve constructive purposes. “The enzymes aren’t loose and disorganized where they would just end up destroying the matrix,” Goldberg states. “By mechanisms that we are exploring further, they create a relation between cells and the structures in the matrix. It’s a very elegant system.”

Media Contact

Gwen Ericson EurekAlert!

More Information:

http://www.wustl.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors