Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows plants can shuffle and paste gene pieces to generate genetic diversity

30.09.2004


A team of researchers at the University of Georgia has discovered a new way that genetic entities called transposable elements (TEs) can promote evolutionary change in plants.



The research, published Sept. 30 in the journal Nature, was led by Dr. Susan Wessler, a Distinguished Research Professor of plant biology at UGA. The Wessler lab studies TEs, which are pieces of DNA that make copies of themselves that can then be inserted throughout the genome. The process can be highly efficient. Almost half of the human genome is derived from TEs and, this value can go to an astounding 95 percent or even higher for some plants, such as the lily. "Normally transposable elements just copy themselves, said Wessler, "But there were a few anecdotal reports of plant TEs that contained fragments of plant genes that the TE had apparently captured while it was copying itself. The fact that these instances were so rare suggested that this was not an important process."

In analyzing the TE content of the entire rice genome, Ning Jiang and Xiaoyu Zhang, two postdoctoral fellows in the Wessler lab along with Zhirong Bao, a graduate student in the lab of Dr. Sean Eddy of Washington University in St. Louis, discovered that capturing rice gene fragments is a way of life for one type of TE called MULEs.


MULEs with captured gene fragments were called Pack-MULEs. The study identified more than 3000 Pack-MULEs that contained over a thousand different rice gene fragments. Many of the Pack-MULEs have two or three gene fragments picked up from different genes but now fused together into a new gene combination. "There are only a few mechanisms known for evolving new genes, and one is genetic recombination, which can bring fragments of different genes next to each other," said Wessler. "A second is the duplication of an existing genes followed by mutation of one of the pair until it evolves into another function, though this is not the usual fate because the duplicate copy usually mutate into oblivion."

The discovery of thousands of Pack-MULEs in the rice genome indicates that this may be an important mechanism to create new genes and new functions in rice and in other plants where MULEs are known to flourish. Recent studies indicate that species evolve through the generation of new genes and/or gene variants that help a population adapt to a changing environment, for example, or to inhabit a different niche.

Why are transposable elements so successful? Some think that they are simply "junk" that, much like viruses, they can make lots of copies but do little to help the host. There is mounting evidence, however, that TEs help organisms evolve by making it easier to generate the sort of genetic novelty that is necessary for them to cope with a changing world. Thus, instead of being beasts of burden, Pack-MULEs may serve rice as a tool of evolutionary change.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>