Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hidden diversity: DNA ’barcoding’ reveals a common butterfly is actually 10 different species

29.09.2004


Credit: Daniel Janzen


A common butterfly, found in a variety of habitats from the southern United States to northern Argentina, is actually comprised of at least 10 separate species, according to researchers from the University of Pennsylvania.

Astraptes fulgerator, a medium-large skipper butterfly, is a routine visitor to urban gardens and tropical rainforests. While the "species" has been known to science since 1775, only now has examination of a small and standardized signature piece of the genome – a technique called DNA barcoding – shown that this "species" is really an amalgam of a number of genetically distinct lineages, each with different caterpillars and preferences in food plant and ecosystem.

However, as many as six species can live in the same place, which strongly suggests mating segregation. Because the adults differ at best only slightly in appearance -- so slightly that it was attributed to ordinary "variation" -- this finding may have larger implications for maintaining biodiversity.



"It raises the questions of how many other species out there are really multiple species like this one and what that might mean to wildlife conservation," said Daniel Janzen, co-author of the study and professor in the Department of Biology in Penn’s School Arts and Sciences. "We might lament the local extinction of a plant or animal but take comfort in the notion that the species lives on elsewhere. Well, what if that extinct animal was the only example of a genetically distinct species, hiding inside a morphology similar to the surviving species?"

Janzen and his colleagues report their findings in the Sept. 29 issue of the Proceedings of the National Academy of Sciences. Their research began during 25-year-long inventory of the wildlife in the Area de Conservación Guanacaste, a large conservation zone of dry, rain and cloud forests in northwestern Costa Rica. They noticed that, amid the more than 2,500 wild-caught caterpillars of A. fulgerator, many could be separated by slight variations in color, which then could be linked to the particular plants the caterpillars ate.

It soon became obvious that A. fulgerator was, indeed, a complex of a number of separate species whose adult forms looked remarkably similar. When the centuries-old method of telling insects apart -- the examination of their genitalia by John Burns at the Smithsonian Institution –- proved inconclusive, the team turned to a recently emerging method for discriminating species: DNA "barcoding,"

In much the same way that supermarket barcoding can distinguish one brand of canned beets from another, DNA barcoding is an attempt to classify species by variations in a small signature and standardized portion of gene called cytochrome c oxidase I, common to all life. Based at the University of Guelph in Canada, the Barcode of Life Database can determine patterns of COI gene variation within a given group of specimens. If the specimens in question differ by more than a few percent in their base pairs of DNA in this gene, it is likely that they have come from different populations.

Paul Hebert and Erin Penton at Guelph were able to extract the necessary DNA from 484 adult butterflies deposited at the Smithsonian –- all raised from the much larger pool of caterpillars caught in Costa Rica by Janzen, Winnie Hallwachs and a team of 17 Costa Rican parataxonomists –- despite the fact that these butterflies have been dried museum specimens for as long as 23 years. Where possible, they included at least 20 individuals from each group of food plant, color variation and preferred habitat. As a result, they found 10distinct species within the group known as A. fulgerator in an area the size of the greater Philadelphia area and as many as six species in a place no larger than the 262-acre Penn campus.

"Given the vast range of the supposed A. fulgerator species, it doesn’t take much imagination to realize that there are probably a great many more hidden species out there," Janzen said. "Our results add to the evidence that cryptic species are prevalent, which I believe is of critical importance if we are to document the health of the environment and the richness of global biodiversity."

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu
http://www.barcodinglife.com

More articles from Life Sciences:

nachricht Protein droplets keep neurons at the ready and immune system in balance
16.08.2018 | Howard Hughes Medical Institute

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Interactive software tool makes complex mold design simple

16.08.2018 | Information Technology

Study tracks inner workings of the brain with new biosensor

16.08.2018 | Health and Medicine

Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project

16.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>