Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular switch found that allows cancer cells to become mobile

28.09.2004


Researchers at The University of Texas M. D. Anderson Cancer Center have figured out a key molecular step by which a cancer cell can unhook itself from the mesh weave of other cancer cells in a tumor, and move away to a different part of the body - the process, known as metastasis, that makes cancer so dangerous.



Describing what they call a critical "molecular switch" - detailed in the advance online edition of the journal Nature Cell Biology - the researchers say the door is now open to designing new ways to block that metastasis. "It always has been a mystery as to what allows a cancer cell to become mobile and move away from a tumor, but now we have found a very interesting mechanism that explains it," says the study’s lead author, Mien-Chie Hung, Ph.D., a professor and chair of the Department of Molecular and Cellular Oncology. That switch, in the form of an enzyme known as GSK-3ß, which is known to alter the function of proteins, may "offer us an anticancer strategy to pursue," Hung says.

Most cancers are of the "solid tumor" variety, and are made up of epithelial cells - those which make up the membranous tissue covering organs and other internal surfaces of the body. Although epithelial cells are firmly fixed to each other in a network that makes up tissue, researchers know from the study of developmental biology that embryonic epithelial cells have the ability to move. To do that, epithelial cells take on the characteristics of what are known as "mesenchymal" cells, those that develop into connective tissue and blood vessel cells, among other tissue types. They are capable of forming collagen fibers that allows them to "creep along" to where they are needed during development.


This process, known as "epithelial-mesenchymal transition (EMT)," has recently been observed in cancer progression, Hung says. "It was discovered that the increased motility and invasiveness of cancer cells resembles the EMT that occurs during embryonic development," he says. "And since about 90 percent of cancer deaths result from local invasion and distant metastasis of tumor cells, an insight into how this process works in cancer has been urgently needed."

Some of this transition process in cancer cells already has been described, Hung says. What has been known is that epithelial cells have a lot of protein known as E-cadherin, which act like anchors, fixing the cells onto the tissue membrane while gluing cells to each other. In contrast, mesenchymal cells do not "express" E-cadherin, which allows them to move freely.

Another piece of the puzzle was already in place: a transcription factor known as "snail" was found to control the gene that produces the E-cadherin protein. Snail turns off E-cadherin expression, thus freeing epithelial cell from its tethers. So the question Hung and his research team explored is: what regulates snail? What "tells" snail to turn off E-cadherin? "Cells without E-cadherin are not stuck to each other any more and can move, so we looked for the regulator of snail," Hung says.

Through a series of experiments, they found that the GSK-3ß enzyme controls snail. It does this by directing snail out of the cell’s nucleus (where proteins are located) and into the cell’s cytoplasm, where it is then degraded. "This enzyme tells the snail transcription factor to go to the wrong place, where it is then destroyed," Hung says.

So when GSK-3ß controls the action of snail, a cancer cell continues to produce E-cadherin and retains all the properties of a fixed epithelial cell, the researchers discovered. Tumor cells in which GSK-3ß activity is repressed become unanchored, Hung says, suggesting that a therapy that bolsters GSK-3ß may repress the ability of cancer to spread.

Hung and his group also say that known cancer pathways, such as those that involve the epidermal growth factor receptor (EGFR) have been shown to inhibit the GSK-3ß enzyme. "So this all makes sense. We have mechanistically shown how a signaling pathway known to promote cancer development can also promote metastasis," he says. "Now we have to work on ways to inhibit that process."

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>