Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence builds for potential new cancer drug target

28.09.2004


In a paper published today in the Proceedings of the National Academy of Sciences, Temple University researchers report that one of the functions of the c-myb gene, which leukemia cells depend on for proliferation, is the formation of white blood cells.



"This study is another step in the process of validating the c-myb gene as a potential target for new cancer drugs," said Prem Reddy, Ph.D., professor and director of the Fels Institute for Cancer Research and Molecular Biology at Temple University School of Medicine.

Knowing that the c-myb gene played a role in the spread of leukemia, the researchers wanted to determine the gene’s normal function. This was accomplished by deleting the c-myb gene in a mouse model. New technology allowed the scientists to delete c-myb from one specific type of tissue in the model rather than from the entire organism. "We removed the c-myb gene from T cells and in the process discovered that c-myb is required for white blood cell formation," said Reddy. In other research conducted by the team but not yet published, c-myb was deleted from breast tissue. The researchers believe that this gene plays a critical role in breast cancer and want to show the effects of its deletion on breast tumor cell proliferation.


The group’s research is providing detailed genetic explanations of how and why c-myb is essential for the proliferation of white blood cells and breast cells by demonstrating that when it’s removed, cell proliferation is impaired and the risk of developing cancer is reduced. "We hope to develop a drug that blocks the harmful activity of this gene in the near future. This finding was very serendipitous. We used to think c-myb was only associated with the development of leukemia but found that it’s also involved in the development of breast cancer," said Reddy.

Other researchers on the team include the study’s first author, Yen K. Lieu, Atul Kumar, Anthony G. Pajerowski, and Thomas J. Rogers.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>