Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spun from bone

24.09.2004


PNNL-USC team discovers how protein in teeth controls bone-like crystals to form steely enamel


Sculpting Enamel From Bone: Top right: an electron microscope captures the weave structure of the long crystal stands that give enamel its strength. Bottom: A model based on nuclear magnetic resonance data derived at Pacific Northwest National Laboratory that shows how an active portion of the enamel-building protein, an amelogenin called LRAP, interacts with the crystal hydroxyapatite, or HAP, used by the body to engineer both bone and enamel. An isotopically labeled amino acid group (yellow, just left of center) in LRAP is near the HAP surface, a closeness that appears to encourage full interaction of protein with HAP that enables the protein to dictate the pattern of crystal formation.



Bone and enamel start with the same calcium-phosphate crystal building material but end up quite different in structure and physical properties. The difference in bone and enamel microstructure is attributed to a key protein in enamel that molds crystals into strands thousands of times longer and much stronger than those in bone. The dimension of an enamel strand is 100,000 by 50 by 25 nanometers; bone is 35 by 25 by 4 nanometers.

But how that protein achieves this feat of crystal-strand shape-shifting has remained elusive. Today, scientists have reported the first direct observation of how this protein, amelogenin, interacts with crystals like those in bone to form the hard, protective enamel of teeth.


The study, published by a team from the Department of Energy’s Pacific Northwest National Laboratory and the University of Southern California on Friday (Sept. 24) in Journal of Biological Chemistry, identifies the region of the protein that interacts with the enamel crystals. The results explain how 100 nanometer spheres of amelogenin cluster like bowling balls around developing enamel crystals, forcing the crystals to elongate into thin, weaved strands that endow enamel with the strength of steel.

The discovery is a milestone for those who would wish to nano-engineer tissues, implants and synthetic coatings based on nature’s rules. “The proteins determine the crystal structure,” said Wendy J. Shaw, lead author and PNNL staff scientist. “Like bone, teeth are made of HAP, but the proteins present when teeth form create enamel, a material with entirely different properties from bone. If you can control the interactions between proteins and crystals, the same principal can be applied to nano-patterning and nano-building.”

Shaw’s co-authors are PNNL chief scientist Allison A. Campbell and Michael L. Paine and Malcolm L. Snead of USC’s Center for Craniofacial Molecular Biology in Los Angeles.

Earlier studies showed that mutated mice without amelogenin produced defective enamel. Other experiments set out to pinpoint the part of the protein responsible, pointing researchers toward the protein’s so-called carboxyl terminus—a region made up of many negatively charged amino acids. “People concentrated on this region,” according to Shaw, “because it has several negatively charged groups that are generally thought to interact with the positively charged groups in hydroxyapatite’’—or HAP, the crystals that make up bone and enamel.

A series of experiments confirmed that this region played an important role in shaping HAP crystals. Armed with this information, Shaw and colleagues set out to prove that this carboxyl group was indeed the business end of the protein.

To do that, they selected a form of amelogenin called LRAP and isotopically labeled one of the charged amino acids thought to be near LRAP’s surface. They put the protein into contact with hydroxyapatite, a proxy for developing enamel crystals, then took its picture. In this case, the “camera” was a powerful nuclear magnetic resonance instrument capable of recording the positions of tagged protein atoms in relation to the forming HAP crystals. “There are only a handful of labs capable of doing this,” Shaw said, “and there are more proteins than there are people to look at them all.”

The NMR data complement previous results, suggesting that protein’s function is to interact with HAP specifically. The carboxyl terminus of the protein is later cleaved by an enzyme, disrupting the protein-HAP interaction and allowing the long, thin crystals to grow outward as well, in three dimensions. The protein is cleaved further still, Shaw said, and by the time the process is complete, enamel is 99.9 percent crystal and no protein.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>