Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers ID chlorophyll-regulating gene

24.09.2004


Researchers at the University of California, Berkeley, have identified a critical gene for plants that start their lives as seeds buried in soil. They say the burial of seeds was an adaptation that likely helped plants spread from humid, wet climates to drier, hostile environments.



In a study published in the Sept. 24 issue of the journal Science, the researchers describe how a gene called phytochrome-interacting factor 1, or PIF1, affects the production of protochlorophyll, a precursor of the chlorophyll used by plants to convert the sun’s energy into food during photosynthesis.

While a seed germinates under soil, in the dark, it is producing a controlled amount of protochlorophyll in preparation for its debut above ground. Much like a baby takes his or her first breath of air after emerging from the womb, seedlings must quickly convert protochlorophyll into chlorophyll once they are exposed to light for the first time. "It’s a delicate balancing act," said Peter Quail, professor of plant and microbial biology at UC Berkeley’s College of Natural Resources and principal investigator of the study. "The young plant needs some protochlorophyll to get the ball rolling in photosynthesis. But if the plant accumulates too much of the compound, it leads to photo-oxidative stress, which is seen as bleaching on the leaves. The overproduction of protochlorophyll is like a ticking time bomb that is set off by the sun."


Quail is also research director of the Plant Gene Expression Center, a joint research center of the Agricultural Research Service of the U.S. Department of Agriculture and the University of California. The researchers targeted the PIF1 gene because it binds to phytochrome, a protein that is triggered by light and that controls a plant’s growth and development. The researchers disabled the PIF1 gene in the species Arabidopsis thaliana, a mustard plant, and compared the mutant seedlings with a control group of normal plants.

They grew the seedlings in the dark to mimic conditions beneath the soil, bringing groups out into the light at different time points throughout a six-day period. In nature, seeds are typically buried under 2 to 10 millimeters of soil, taking anywhere from two to seven days to germinate and break through the soil surface. "We found that mutated plants had twice the levels of protochlorophyll than normal, wild-type plants, suggesting that phytochrome acts as a negative regulator for protochlorophyll," said lead author Enamul Huq, who conducted the study while he was a post-doctoral researcher at UC Berkeley’s Department of Plant and Microbial Biology. "We also saw that the longer the seedlings were grown in the dark, the more likely they would die when they were exposed to light."

The mutated seedlings failed to switch off production of protochlorophyll throughout the germination period, so the longer the seedlings stayed in the dark, the more toxic the levels became. Huq, now an assistant professor of molecular cell and developmental biology at the University of Texas at Austin, pointed out that it is an "unbound" form of protochlorophyll that is toxic. Normal plants, he said, produce enough of an enzyme, called protochlorophyllide oxidoreductase, to bind with typical levels of protochlorophyll. But not enough of the enzyme is produced to handle the overabundance of unbound protochlorophyll churned out by the mutant seedlings.

The researchers say the ability of plants to precisely regulate production of protochlorophyll was probably an evolutionary development designed to ensure seed survival among higher plants. Primitive plants, such as mosses and some species of fern, thrive in moist, humid environments where their spores can stay safely above the soil surface. But all higher plants - from grasses to trees to agricultural crops such as wheat and corn - must have the ability to transition from the darkness of an underground environment to life above ground. "The development of seed burial in plants provided a long-term survival benefit through protection from predators and hostile surface conditions," said Quail. "The true test of our hypothesis would be to verify whether primitive plants have the PIF1 gene, and whether the gene is functional."

The finding may also have implications for agricultural biotechnology, allowing researchers to manipulate the gene to improve the efficiency with which plants carry on photosynthesis.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>