Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexible pain relief with morphine-free poppy

23.09.2004


Morphine-free poppy



A handful of genes in a morphine free poppy could hold the key to producing improved pain management pharmaceuticals. Norman, the ’no-morphine’ poppy, is superior to morphine producing poppies as it produces thebaine and oripavine – compounds preferred by industry in the manufacture of alternative high value pain-killers.

CSIRO’s Dr Phil Larkin, and The Australian National University’s Anthony Millgate and Dr Barry Pogson have been working with Tasmanian Alkaloids to investigate Norman the morphine-free poppy. "The genes we found behaved differently in Norman compared to standard morphine producing poppies and were consistently associated with the blockage in morphine synthesis and with the accumulation of thebaine and oripavine," Dr Larkin says.


"Understanding the genes responsible for the production of morphine, thebaine and oripavine is an important step in further developing poppies that are tailored to produce alternative pharmaceuticals."

The morphine free poppy variant, TOP1, was first discovered in 1995 by Tasmanian Alkaloids then released as Norman for commercial production in 1997 in Tasmania where it is now widely grown. "Norman created substantial industry growth when there was a surplus of traditional products, such as morphine, allowing us to supply raw materials for the manufacture of other pharmaceutical ingredients," says Tasmanian Alkaloids’ Manager of Agricultural Research, Dr Tony Fist.

Tasmania already grows over 40 per cent of the world’s legal poppy crops and Norman will ensure Tasmania stays an international leader in pharmaceutical development from poppy compounds.

This research is supported by voluntary contributions from industry with matched funding for R&D from the Australian Government through HAL and is a collaboration between CSIRO Plant Industry, The Australian National University, Tasmanian Alkaloids, Institute for Plant Biochemistry (Germany) and the University Halle (Germany).

Sophie Clayton | EurekAlert!
Further information:
http://www.csiro.au

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>