Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine microbes focus of major gift to MIT

22.09.2004


Marine microbes shape the chemical composition of the Earth’s oceans and atmosphere, yet we know essentially nothing about them. Now, thanks to major grants from the Gordon and Betty Moore Foundation, MIT researchers aim to learn dramatically more about some of the most important organisms on the globe.



Professors Penny Chisholm and Ed DeLong are among the four Moore Foundation Investigators in Marine Science selected nationally. Each inaugural investigator will receive almost $5.5 million over the next five years through the foundation’s new marine microbiology initiative, which was established to "generate new knowledge regarding the composition, function and ecological role of microbial communities in the world’s oceans," according to foundation literature.

President Charles M. Vest applauded the Moore Foundation for its decision to make this major commitment to understanding the genetic inventory of microbial ecosystems in the ocean and the role they play in critical planetary processes. "The Marine Microbiology initiative will generate important new knowledge for the future of our planet and will establish the Gordon and Betty Moore Foundation as a leader in funding scientific research in this emerging field," said Vest.


Dean of Engineering Thomas L. Magnanti said the work of Chisholm and DeLong exemplifies MIT’s strong commitment to environmental sciences and engineering, and to research and education that crosses conventional disciplinary boundaries to address complex problems of great importance. "It is very gratifying that the foundation has chosen Penny and Ed as Moore Investigators," said Magnanti.

Underwater Microbes

Chisholm’s research over the past decade has focused on the ecology of Prochlorococcus, the smallest known photosynthetic cell and the most abundant microbe in the sea. A biological oceanographer, she was a part of the team that first discovered the organism in 1985. "I am thrilled about the Moore funding because it allows us to take more risks in our research and relieves us of the annual grant-writing pressure. But I am even more excited about the visibility the Moore marine microbiology initiative will give our field. The introduction of genomic analyses to marine microbial systems has triggered an exciting paradigm shift in biological oceanography, and the Moore initiative will play a key role in this," said Chisholm, the Lee and Geraldine Martin Professor of Environmental Studies, who holds appointments in the Department of Civil and Environmental Engineering (CEE) and the Department of Biology.

DeLong, who joined the MIT faculty in July after seven years at the Monterey Bay Aquarium Research Institute, is well known for inventing new approaches for studying microbes. "The broad activities of my lab are all centered about the use of new technologies, especially genomic technologies, to learn more about the natural microbial world. The Moore support represents an incredible, enabling boost to our efforts, and that of the field as a whole. This is a voyage of discovery, and is contributing to both knowledge creation as well as applied tools and technologies for biomedicine, biotechnology and bioengineering," said DeLong, who holds appointments in CEE and the Biological Engineering Division. "One great thing about being here at MIT is that a lot of new technologies needing further development for environmental/ecological applications are all front and center on the research and development agenda here. These include genomics, computational biology, systems biology, sensor technology, and ocean engineering."

MIT has a history of research in the environmental sciences through programs like the Earth System Initiative (ESI), which Chisholm co-directs with Professor Kip Hodges of the Department of Earth, Atmospheric and Planetary Sciences. ESI was launched in 2002 to better understand how the Earth functions from the molecular to the global scale or, in the case of marine microbes, from the genomic to the ecosystem level.

To that end Chisholm, DeLong and CEE Associate Professor Martin Polz, who also specializes in marine microbiology, are forging alliances with researchers from across MIT to plumb the secrets of the ocean’s tiniest denizens. (Polz is an investigator with the Woods Hole Center for Oceans and Human Health, which was formed in May with funding from the National Science Foundation and the National Institute of Environmental Health Sciences, one of the National Institutes of Health.)

The Gordon and Betty Moore Foundation launched its 10-year marine microbiology initiative in April. Funding strategies include supporting Moore Foundation Investigators, linking scientists in related fields, establishing intern programs and supporting select research projects that will affect ocean science as a whole. "It is the foundation’s goal not only to support the top scientists in marine microbiology, but to stimulate close collaborations between these scientists to accelerate even further progress in this key area of ocean research," said David Kingsbury, director of marine science for the foundation.

The foundation was established in November 2000 by Intel co-founder Gordon Moore and his wife Betty to create positive outcomes for future generations. Its principal areas of concern are environmental conservation, science, higher education, and the San Francisco Bay Area.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>