Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists decipher genetic code of biothreat pathogen

21.09.2004


Highly regulated virulence genes and genomic instability found in the horse pathogen, burkholderia mallei



More than 2,400 years after Hippocrates first described the symptoms of glanders, scientists have deciphered the genetic code of the ancient pathogen that causes the horse disease: Burkholderia mallei.

The study found that B. mallei, a highly evolved pathogen that has been deployed in the past as a biological weapon, has an extremely regulated set of virulence genes and an unstable genome that may explain the bacterium’s ability to thwart the immune responses of its host animals – mainly horses, mules and donkeys. "The combination of virulence genes and genomic instability may explain why some scientists consider this to be the ultimate bacterial pathogen," says William Nierman, the first author of the study, which is being published in the Proceedings of the National Academy of Sciences (PNAS).


As part of the study, scientists used DNA microarrays to better understand the functions of B. mallei virulence genes. Nierman, an investigator at The Institute for Genomic Research (TIGR), said the new study, along with a report on the related bacterium B. pseudomallei published in the same issue of PNAS, "has dramatically increased our understanding of the biology and pathogenicity of these very sophisticated pathogens."

Even though the symptoms of glanders have been known since the description by Hippocrates in 425 B.C., scientists have yet to develop a vaccine that is effective against this highly infectious equine disease. When humans are infected, treatment requires a long-term regimen of multiple antibiotics. A test developed by German scientists after B. mallei was isolated in 1882 greatly improved the early detection of the disease in horses. Glanders was eradicated in the United States by the 1930s.

Cultures of B. mallei were used as biological weapons during the U.S. Civil War, World War I and World War II. In addition, there have been reports that the Soviet Union weaponized the pathogen and possibly used it during the Soviet occupation of Afghanistan.

TIGR collaborated on the B. mallei study with a research team led by David DeShazer, a glanders expert with the U.S. Army Medical Research Institute for Infectious Diseases (USAMRIID) in Frederick, MD. The parallel study of B. pseudomallei, which causes the disease melioidosis in humans, was conducted by a team led by scientists at the Wellcome Trust Sanger Institute in the United Kingdom.

The B. mallei study was funded by the National Institute of Allergy and Infectious Diseases (NIAID), which is part of the National Institutes of Health. Following up the genome analysis, TIGR is now examining several other strains and isolates of B. mallei and B. pseudomallei under an NIAID microbial sequencing contract. "Using the tools of comparative genomics, scientists will be able to deepen the understanding of the molecular reasons why these related pathogens have such different impacts, in terms of their target hosts and their pathogenicity," says TIGR President Claire Fraser, the study’s senior author.

Robert Koenig | EurekAlert!
Further information:
http://www.tigr.org

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>