Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double dealing receptor protein on tumors promotes cancer development in cell nucleus

21.09.2004


Researchers at The University of Texas M. D. Anderson Cancer Center now have evidence that receptors found on tumors that were believed to function only on the surface of cells can actually switch on genes inside a cell’s nucleus, thus promoting cancer development in two distinct ways.



They specifically found that HER-2 cell surface receptors, known to promote breast and other cancers when they allow too many growth signals to enter a cell, can actually travel into the nucleus and turn on a variety of genes, including COX-2, which also is associated with carcinogenesis.

The discovery, published in the September issue of the journal Cancer Cell, likely will revolutionize the way scientists think about membrane receptors, says the study’s lead author, Mien-Chie Hung, Ph.D., a professor in the Department of Molecular & Cellular Oncology. "For a number of years, researchers have found membrane receptors associated with cancer development in the nucleus of cells, but they believed these were just debris left over from the receptor’s primary job, which is to shuttle signals into a cell," says Hung. "Here we find that a receptor protein known to be important in one cancer pathway also can enter a cell’s nucleus to turn on genes associated with a different carcinogenesis pathway," he says. "Proof of the dual nature of these receptors may well change the nature of research associated with them and, possibly, treatment strategy."


The team of researchers revealed the double-dealing nature of the HER-2 protein receptor after they developed a new cloning and bioinformatics technique to track the path of the receptor. This technology, they say, can now be used by scientists to look for duplicitous behavior in other cell surface proteins.

They developed a method to remove the membrane and outer portion of a cancer cell so that little more than the nucleus was left, and then used an antibody that attached to the HER-2 protein to detect what the receptor protein was doing. They found that HER-2 did attach to a number of genes in the nucleus, one of which is the "promoter" region of the cyclooxygenase-2 (COX-2). In other words, HER-2 was activating the transcription of COX-2. "Each works in a completely different way, and no one thought that one could be regulating the other," Hung says.

Up to 30 percent of breast cancers "over-express" the HER-2 cell surface protein, which pushes the cell to grow. Over-expression of COX-2 does not allow a damaged cell to die and also is associated with cancer cell invasion and metastasis, he says.

Both also are targets for cancer treatments: the breast cancer drug Herceptin has proven beneficial in delaying progression in women whose tumors are HER-2 positive, and the use of non-steroidal anti-inflammatory drugs (NSAID), which slows down expression of COX-2 is being tested as a chemopreventive agent in people who are at high risk of developing certain cancers.

Hung says now that the technology has been developed, researchers can track a variety of membrane receptor tyrosine kinases that have been found inside the nucleus, many of them regulate a variety of cell functions, including proliferation, differentiation and survival. These include other epidermal growth factor receptors (EGFR), of which HER-2 is a member, the vascular epithelial growth factor (VEGF) receptors known to stimulate tumor angiogenesis, and insulin receptors, among many others. "Science is based on available technology," he says. "And now we can have a peephole into the nucleus that I believe will open up whole new avenues of research."

Heather Sessions | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>