A new study by researchers at Joslin Diabetes Center sheds light on the key mechanisms by which new pancreatic beta cells normally form in response to insulin resistance. These findings may some day help researchers devise ways of staving off full-blown diabetes.
Insulin resistance is a condition in which the body needs increasing amounts of insulin to function properly, including keeping blood glucose levels in the normal range. It is a major contributor to type 2 diabetes, obesity and the metabolic syndrome, which affect nearly one-quarter of the American population.
For years, the body compensates for insulin resistance in order to delay the onset of clinical type 2 diabetes: The pancreas secretes more insulin and, in fact, more insulin-producing beta cells form within the pancreas. This formation of new beta cells is the focus of intensive research: Which cells give rise to these new beta cells and how? (Some researchers, for example, theorize that the new cells are derived from immature ductal cells--the cells that line the ducts of the pancreas.) And what signals this replication of beta cells to occur?
Marjorie Dwyer | EurekAlert!
Further information:
http://www.joslin.harvard.edu
Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich
New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory
For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.
The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...
Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens
Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...
Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light
When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...
The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...
Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.
DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.
Anzeige
Anzeige
Global Legal Hackathon at HAW Hamburg
11.02.2019 | Event News
The world of quantum chemistry meets in Heidelberg
30.01.2019 | Event News
16.01.2019 | Event News
Gravitational waves will settle cosmic conundrum
15.02.2019 | Physics and Astronomy
Spintronics by 'straintronics'
15.02.2019 | Physics and Astronomy
Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | Life Sciences