Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of new biological principle can give better cancer treatment

13.09.2004


Pioneering research on leukaemia cells can have identified their vulnerable spot. This new knowledge can now be used to produce more effective medicines.



A group of scientists at the University of Bergen and Haukeland University Hospital made a surprising discovery when they stimulated leukaemia cells with the growth hormone GM-CSF. The reaction of the cells surprised everyone and would seem to indicate that scientists in Bergen have uncovered a new biological principle and consequently, a new therapeutic goal.

"We shouted, and expected to get one reply, but what we got was a bellow from an entire football team," says Project Leader Bjørn Tore Gjertsen, who was recently presented in the renowned American periodical Cell.


Hugely important discovery for cancer patients

Cell membranes contain receptors that are stimulated by a number of environmental factors, among them hormones. This starts a chain reaction between proteins that can in cancer cells result in increased production of substances that hamper necrocytosis (cell death) and encourage cancer. A mutation in receptor Flt3 and how this activates the chain reaction has previously been paid a lot of attention. In the tests carried out by Gjertsen and his fellow scientists, it was the GM-CSF receptor that captured their attention. Patients with Flt3 mutation showed an enormous reaction, in proteins that should in principle be normal. This indicates that the attack should be mounted here, if one is to find effective but gentle methods of cancer treatment.

"We have used tests from thirty patients with an acute type of spinal leukaemia. Compared to young people with lymphatic leukaemia, these patients have little chance of recovery. Life expectancy without treatment is about 2-3 months and only 20 percent are cured by chemotherapy. The study results can in principle also be applied to other types of cancer cells, so these results can prove to be of great importance for future cancer sufferers," says Gjertsen.

In this particular research project, Gjertsen has collaborated with colleagues from Stanford University and also several from the research milieu in Bergen, including Randi Hovland and Øystein Bruserud. With support from the cancer association, Bruserud has over the last twelve years, collected an invaluable bank of leukaemia tests. The Americans were contacted because they have developed a quick method for looking at the activation of proteins with the help of an antibody produced by mice.

"We have invaluable profiles that give us a comprehensive picture of what happens inside the cells. In spite of the huge amount of scientific research on cancer during the last ten years, there have been few important clinical results. This is mainly due to the fact that we have turned one stone at a time and studied the building blocks of the cancer cells individually. In system biology we try to look for patterns so that we can get a complete and realistic overall picture," says Gjertsen, "and adds that the use of cells collected from patients, and not static cell lines, can be the only way to get secure results."

The collaboration now continues with unabated strength, searching for energized key cancer proteins that lie under the signal line studied in the Cell article.

Bjørn Tore Gjertsen | alfa
Further information:
http://www.helse-bergen.no
http://www.forskningsradet.no

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>