Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The clue of genomic instability in breast cancer

07.09.2004


New research has shown, using human tissue biopsies - a hypothesis that until now could only be argued indirectly using cell cultures – that the significant increase in genomic "disorder" that is associated with breast cancer occurs in the transition between the typical hyperplasia and the in situ carcinoma, coinciding with a reduction to a critical minimum in the cell chromosome terminations (known as telomeres). This process of critical reduction, occurring due to the accumulation of cell divisions, causes problems in the cell division process, giving rise to cells with an abnormal genetic content. These cells are normally detected and eliminated from the organism thanks to a complex control and defence mechanism, but the activation of a protein known as telomerase is capable of short-circuiting these defence mechanisms and perpetuate these cells with abnormal genetic content, facilitating the development of the cancer.



The research work was carried out in the prestigious Lawrence Berkeley National Laboratory of the US Department of Energy at Berkeley (California) in collaboration with the University of California in San Francisco.

The contribution of the Spanish scientists Carlos Ortiz de Solórzano and Enrique García Rodríguez to the research was the development of programmes for the analysis of images from confocal 3D microscopy by which each cell can be observed separately and the amount of DNA in each cell nucleus determined. The number of de copies of genes involved in the development of the cancer and the number and length of the telomeres of these cells can be thus determined. This study would not have been possible without the 3D scientific visualisation programmes. The task group at the Lawrence Berkeley National Laboratory was directed by Dr. Carlos Ortiz de Solórzano, who leads a microscopy and biomedical image analysis group.


The work published by the latest number of Nature Genetics, one of the scientific journals with most impact in the field of biomedical research and the magazine of reference for genomic investigation, suggests that persons with benign tumours and who have a greater risk of developing cancer could be identified at an early stage by measuring telomerase activity; it opens the doors to the development of new therapeutic agents that selectively eliminate the tumorous cells, avoiding the reactivation of the telomerase enzyme in cells with an abnormal genetic content, or eliminate cells where the enzyme has been reactivated.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com

More articles from Life Sciences:

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

nachricht Removing toxic mercury from contaminated water
21.11.2018 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>