Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virus product could kill anthrax and beat antibiotic resistance

07.09.2004


Researchers from Rockefeller University, New York, have developed a new way of killing dangerous bacteria like the ones which cause anthrax and pneumonia, using products from a virus, according to new research presented today (Tuesday, 07 September 2004) at the Society for General Microbiology’s 155th Meeting at Trinity College Dublin.



The new bug-smashing technique uses the bacteria’s own natural enemies, tiny viruses called bacteriophages (or phages), which can infect bacterial cells. The phages make thousands of copies of themselves inside infected bacteria, but then need to dissolve the bacteria’s cell wall to get out and infect other bacterial cells.

“We realised that bacteria have no effective natural defences against these phages once they have been infected,” says Professor Vincent Fischetti of Rockefeller University. “After infection, the phages make an enzyme to dissolve the bacterial cell walls for release and we found that we could use the same enzyme to attack and kill the disease bacteria responsible for pneumonia, anthrax or strep throat.”


The enzymes work on contact, killing the disease bacteria instantly, but without harming other friendly types of bacteria. This offers huge advantages over conventional antibiotics, which indiscriminately kill most bacteria, including our useful ones, and which can lead to disease resistance building up if used too frequently.

“About half of us normally carry disease bacteria in our nose or throat, but without symptoms, which form the only reservoir for these organisms in the environment, allowing them to travel from person to person until they are able to cause infection in the right individual,” says Prof Fischetti. “Removing these bacteria from people in hospitals, day care centres and nursing homes could have a major impact on disease outbreaks amongst vulnerable people in these settings.”

The novel technique offers medical workers an opportunity to control disease bacteria in a completely new way. So far no resistance has been found to the enzymes, but if it were to occur it would be very rare, much rarer than antibiotic resistance. The enzymes successfully kill antibiotic-resistant bacteria that are causing a major problem in hospitals and nursing homes.

“We now have enzymes that kill all bacteria of a particular type, called Gram-positive bacteria, of the major disease-causing organisms, including bacteria for strep throat, pneumonia, neonatal meningitis, endocarditis and anthrax,” says Prof Fischetti. “Since we have never found any resistance to the enzymes, they can be used safely, long term, even to kill recurrent infections.”

In addition, the scientists are currently carrying out clinical trials of an enzyme which can specifically kill anthrax in the blood. This could be used during a terrorist attack or emergency to save the lives of exposed individuals.

Faye Jones | alfa
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht Drug discovery: First rational strategy to find molecular glue degraders
03.08.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Chlamydia: Greedy for Glutamine
03.08.2020 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>