Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover proteins involved in spread of HIV-1 infection

02.09.2004


An international team of researchers has identified a family of proteins that are involved in HIV-1 budding from host cells, and are therefore likely to be essential for the spread of the virus. Targeting these proteins and the proteins they interact with could lead to potential new therapies for HIV-1 as well as other viruses that use the same budding mechanism.



The research appears as the "Paper of the Week" in the August 20 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

Like other enveloped viruses, HIV-1 needs to bud from host cells in order to spread infection to other cells. To do this, the virus hijacks a pathway that normally sorts proteins into cellular compartments called multivesicular bodies (MVB) for destruction by lysosomes. The HIV Gag protein contains a specific sequence of amino acids which it uses to recruit the human tumor susceptibility gene 101 (TSG101). The virus then uses TSG101 to take control of the protein sorting and vesicle formation machinery and use it for its own purposes.


Previously, scientists determined that the yeast version of TSG101, called Vps23p, binds to two other proteins, Vps28p and Vps37p, to form the Endosomal Sorting Complex Required for Transport (ESCRT-I) which then participates in the protein sorting and packaging process.

However, the analogous pathway in humans is not quite as defined--scientists have found the human equivalent of Vps28p, but not Vps37p. Missing this protein has made it hard to understand what exactly goes on in humans. Now, Wesley Sundquist, professor of biochemistry at the University of Utah, and his colleagues report that they have found the human version of Vps37p. "Our paper describes the identification of the human VPS37 proteins. This is a necessary step both for understanding how HIV-1 buds from cells and for defining the MVB pathway in human cells," says Sundquist.

An unexpected result was that there was more than one VPS37 protein in human cells. In fact, there was a family of four different VPS37 proteins that the scientists named VPS37A-D. Says Sundquist, "We do not yet fully understand why humans have four different VPS37 proteins, but we assume that this provides greater potential for regulating the MVB pathway, which is responsible for targeting a number of important cellular proteins for lysosomal destruction."

The scientists focused their efforts on one of the proteins,VPS37B, and found that it binds to TSG101 through a conserved sequence of amino acids that is also present in all of the other Vps37 proteins. They also showed that VPS37B is a subunit of the human ESCRT-I complex, and that it is capable of recruiting the ESCRT-I complex to support HIV budding in vivo.

Sundquist and colleagues also managed to identify regions of TSG101 that bind to VPS28 and VPS37, and showed that theVPS28 binding region is essential for HIV-1 budding. This information could potentially be used to develop drugs that target these binding regions and disrupt HIV-1 budding, preventing infection from spreading.

These results were independently confirmed by another research group led by Harald Stenmark of the Norwegian Radium Hospital in Montebello, Norway. Stenmark’s group also discovered the same group of human VPS37 proteins and published their results in the September issue of Molecular Biology of the Cell.

Says Sundquist, "In a general sense, I think that it is important to identify all of the cellular proteins that are involved in HIV replication, and it appears likely that the newly identified VPS37 proteins play a direct role in HIV budding. In principle, the VPS37 proteins are therefore potential new drug targets, though of course many significant hurdles remain to be overcome, such as inhibitor screening and potential problems with cellular toxicity."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>