Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover proteins involved in spread of HIV-1 infection

02.09.2004


An international team of researchers has identified a family of proteins that are involved in HIV-1 budding from host cells, and are therefore likely to be essential for the spread of the virus. Targeting these proteins and the proteins they interact with could lead to potential new therapies for HIV-1 as well as other viruses that use the same budding mechanism.



The research appears as the "Paper of the Week" in the August 20 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

Like other enveloped viruses, HIV-1 needs to bud from host cells in order to spread infection to other cells. To do this, the virus hijacks a pathway that normally sorts proteins into cellular compartments called multivesicular bodies (MVB) for destruction by lysosomes. The HIV Gag protein contains a specific sequence of amino acids which it uses to recruit the human tumor susceptibility gene 101 (TSG101). The virus then uses TSG101 to take control of the protein sorting and vesicle formation machinery and use it for its own purposes.


Previously, scientists determined that the yeast version of TSG101, called Vps23p, binds to two other proteins, Vps28p and Vps37p, to form the Endosomal Sorting Complex Required for Transport (ESCRT-I) which then participates in the protein sorting and packaging process.

However, the analogous pathway in humans is not quite as defined--scientists have found the human equivalent of Vps28p, but not Vps37p. Missing this protein has made it hard to understand what exactly goes on in humans. Now, Wesley Sundquist, professor of biochemistry at the University of Utah, and his colleagues report that they have found the human version of Vps37p. "Our paper describes the identification of the human VPS37 proteins. This is a necessary step both for understanding how HIV-1 buds from cells and for defining the MVB pathway in human cells," says Sundquist.

An unexpected result was that there was more than one VPS37 protein in human cells. In fact, there was a family of four different VPS37 proteins that the scientists named VPS37A-D. Says Sundquist, "We do not yet fully understand why humans have four different VPS37 proteins, but we assume that this provides greater potential for regulating the MVB pathway, which is responsible for targeting a number of important cellular proteins for lysosomal destruction."

The scientists focused their efforts on one of the proteins,VPS37B, and found that it binds to TSG101 through a conserved sequence of amino acids that is also present in all of the other Vps37 proteins. They also showed that VPS37B is a subunit of the human ESCRT-I complex, and that it is capable of recruiting the ESCRT-I complex to support HIV budding in vivo.

Sundquist and colleagues also managed to identify regions of TSG101 that bind to VPS28 and VPS37, and showed that theVPS28 binding region is essential for HIV-1 budding. This information could potentially be used to develop drugs that target these binding regions and disrupt HIV-1 budding, preventing infection from spreading.

These results were independently confirmed by another research group led by Harald Stenmark of the Norwegian Radium Hospital in Montebello, Norway. Stenmark’s group also discovered the same group of human VPS37 proteins and published their results in the September issue of Molecular Biology of the Cell.

Says Sundquist, "In a general sense, I think that it is important to identify all of the cellular proteins that are involved in HIV replication, and it appears likely that the newly identified VPS37 proteins play a direct role in HIV budding. In principle, the VPS37 proteins are therefore potential new drug targets, though of course many significant hurdles remain to be overcome, such as inhibitor screening and potential problems with cellular toxicity."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>