Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein involved in childhood disorder linked to cancer

31.08.2004


A team of scientists has found that a protein involved in a congenital neurological disorder also plays a role in DNA damage repair and thus cancer prevention. The research appears as the "Paper of the Week" in the August 13 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

Primary microcephaly is a rare neurological disorder that results in an abnormally small head due to improper brain formation and growth. Children with this condition may be short, have seizures and have normal or mildly retarded intelligence.

"Microcephalin is the protein encoded by the MCPH1 gene, which, when mutated, is a major cause of microcephaly. We have now identified an important function for microcephalin, which may eventually help explain the connection of MCPH1 with microcephaly, and which links microcephalin function to DNA damage responses that prevent cancer from developing," said David F. Stern, Ph.D., and Xingzhi Xu, M.D./Ph.D. of the Yale University School of Medicine.



Cells incur chronic DNA damage from exposure to normal metabolic byproducts as well as external chemicals and radiation. In order to mitigate this DNA damage, cells must have a mechanism for both detecting damage and for stopping their machinery until the damage is fixed. This feedback mechanism relies on cycle "checkpoint" controls that delay the cell division cycle so that these repair systems have time to work.

"Regulation of these protective processes is coordinated through the action of signaling systems that detect DNA damage, interpret and amplify the signal, and call in appropriate repair and checkpoint responses," said Stern and Xu. "Impairment of checkpoint signaling systems can lead to excessive accumulation of mutations or chromosomal aberrations that are an important aspect of human carcinogenesis."

Microcephalin is very similar in structure to several "mediator" proteins known to be involved in DNA checkpoint responses. Curious to see if microcephalin is involved in these responses, Stern and Xu, along with Juhie Lee, M.D./Ph.D., engineered cells with reduced microcephalin. They found that when they damaged the DNA in these cells with radiation, the checkpoint response was impaired. They also found that, like other mediator proteins, microcephalin is recruited to sites of DNA breaks. From this, the scientists concluded that microcephalin is an important participant in or regulator of DNA checkpoint responses.

This discovery has many potential therapeutic applications. "The finding that MCPH1 is involved in DNA damage responses suggests that MCPH1 loss of function may promote carcinogenesis," said Stern and Xu. "If so, then restoration of MCPH1 function through gene therapy, or upregulation of pathways involving MCPH1 through other means, could forestall cancer development in individuals known to harbor such mutations. Also, drugs that antagonize MCPH1 in tumors that also have other checkpoint defects may sensitize those tumors to genotoxic therapies."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>