Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein involved in childhood disorder linked to cancer

31.08.2004


A team of scientists has found that a protein involved in a congenital neurological disorder also plays a role in DNA damage repair and thus cancer prevention. The research appears as the "Paper of the Week" in the August 13 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

Primary microcephaly is a rare neurological disorder that results in an abnormally small head due to improper brain formation and growth. Children with this condition may be short, have seizures and have normal or mildly retarded intelligence.

"Microcephalin is the protein encoded by the MCPH1 gene, which, when mutated, is a major cause of microcephaly. We have now identified an important function for microcephalin, which may eventually help explain the connection of MCPH1 with microcephaly, and which links microcephalin function to DNA damage responses that prevent cancer from developing," said David F. Stern, Ph.D., and Xingzhi Xu, M.D./Ph.D. of the Yale University School of Medicine.



Cells incur chronic DNA damage from exposure to normal metabolic byproducts as well as external chemicals and radiation. In order to mitigate this DNA damage, cells must have a mechanism for both detecting damage and for stopping their machinery until the damage is fixed. This feedback mechanism relies on cycle "checkpoint" controls that delay the cell division cycle so that these repair systems have time to work.

"Regulation of these protective processes is coordinated through the action of signaling systems that detect DNA damage, interpret and amplify the signal, and call in appropriate repair and checkpoint responses," said Stern and Xu. "Impairment of checkpoint signaling systems can lead to excessive accumulation of mutations or chromosomal aberrations that are an important aspect of human carcinogenesis."

Microcephalin is very similar in structure to several "mediator" proteins known to be involved in DNA checkpoint responses. Curious to see if microcephalin is involved in these responses, Stern and Xu, along with Juhie Lee, M.D./Ph.D., engineered cells with reduced microcephalin. They found that when they damaged the DNA in these cells with radiation, the checkpoint response was impaired. They also found that, like other mediator proteins, microcephalin is recruited to sites of DNA breaks. From this, the scientists concluded that microcephalin is an important participant in or regulator of DNA checkpoint responses.

This discovery has many potential therapeutic applications. "The finding that MCPH1 is involved in DNA damage responses suggests that MCPH1 loss of function may promote carcinogenesis," said Stern and Xu. "If so, then restoration of MCPH1 function through gene therapy, or upregulation of pathways involving MCPH1 through other means, could forestall cancer development in individuals known to harbor such mutations. Also, drugs that antagonize MCPH1 in tumors that also have other checkpoint defects may sensitize those tumors to genotoxic therapies."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>