Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Uncover Secrets of Immune System’s Munitions Factory

26.08.2004


Howard Hughes Medical Institute researchers have discovered a new component of the machinery immune cells use to generate a remarkably diverse array of antibodies from a relatively small number of genes.



The discovery reveals important links in the molecular pathway by which complex genetic alterations arm the immune system to target myriad potential bacterial and viral invaders with swiftness and precision. The discovery may also provide welcome new information about lymphoma, a form of leukemia in which certain cells of the immune system proliferate uncontrollably.

“While this is currently pure speculation, it might be that deregulation of AID activity could lead to mutations that could be involved in the evolution of lymphoma.” Frederick W. Alt


Howard Hughes Medical Institute investigator Frederick W. Alt led the research team that published its findings August 26, 2004, in the journal Nature. Alt and lead author Jayanta Chaudhuri are at Children’s Hospital, Boston, and Harvard Medical School.

The studies focus on B cells, specialized immune cells responsible for producing antibodies, and how an enzyme in those cells known as activation-induced cytidine deaminase (AID) triggers mutations of antibody gene segments to produce an assortment of antibody proteins. This process enables the immune system to produce antibodies that will recognize billions of different antigens - the fragments of foreign invaders that are used to call the immune system to arms.

The presence of an antigen on the surface of a B cell stimulates it to produce antibodies. An important step in this process is the activation of AID, which causes largely random mutations in the genes for the antibody segments that recognize antigens. These mutations occur about a million times more frequently than spontaneous mutations in other genes. In this process, known as somatic hypermutation, AID selectively “damages” the DNA strand, prompting the DNA repair system to create the mutations.

AID also triggers class switch recombination, a highly specific process that involves recombining gene segments that encode the part of the antibody molecule that direct it where to take its antigen cargo and how to dispose of it.

A central mystery in the field of immunology, said Alt, has been how AID acts on antibody genes. In previous studies, Alt and his colleagues showed that the enzyme acts on single-stranded DNA and that, for class switch recombination, such single-stranded DNA can be unraveled from native double-stranded DNA during the process of copying its information to RNA, the cell’s template for production of antibody proteins. However, this mechanism could not explain how AID works during somatic hypermutation.

In the current work, Chaudhuri developed techniques to isolate purified AID from B cells and test its activity on the target for somatic hypermutation. In this way, he found that the enzyme requires an unknown co-factor that was critical for AID function and that this co-factor specifically interacts with AID.

Subsequent analysis revealed that Chaudhuri’s protein was replication protein A (RPA), long known to be part of the DNA replication and repair machinery that attaches to single-stranded DNA.

“RPA was never even suspected to be a candidate for such a role, since it was never suspected that it could get into DNA during RNA transcription,” said Alt. “Until now, it was only known to be involved in certain DNA replication and repair pathways.” Chaudhuri also found that after AID “damages” the DNA, it leaves the complex, but RPA remains. “We believe that RPA is sitting there on the DNA, and it’s recruiting DNA repair factors, which is a great link to the repair machinery needed for the next step in the hypermutation pathway,” said Alt. Thus, in retrospect, RPA’s involvement makes biological sense.

The other major discovery, said Alt, was that for AID to interact with RPA, AID must undergo some modification in B cells - a clue to the nature of the machinery that initiates somatic hypermutation, and a topic for future studies in Alt’s lab.

Identifying RPA’s involvement could have implications for understanding lymphomas. “Lymphomas and some mature B cell tumors are known to show aberrant somatic hypermutation and class switching,” said Alt. “Now that we know more about how the AID-RPA complex works, we can begin to address questions of how the aberrant processes might occur.

“While this is currently pure speculation, it might be that deregulation of AID activity could lead to mutations that could be involved in the evolution of lymphoma,” Alt said. “Also, there might be a mutation in AID or its co-factors that would deregulate it and cause it to target other genes,” he said.

Additional studies will seek to connect the AID-RPA complex with the cell’s repair mechanism to further elucidate the somatic hypermutation and class switch recombination processes, said Alt. “We’d like to figure out how those downstream steps in these two different situations lead in one case to mutation and in the other case to recombination,” he said. “Now that we know more about how AID links to the next steps through RPA, we can begin to address this problem, which is a major question in the field.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Many cooks don't spoil the broth: Manifold symbionts prepare their host for any eventuality
14.10.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Diagnostics for everyone
14.10.2019 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>