Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Uncover Secrets of Immune System’s Munitions Factory

26.08.2004


Howard Hughes Medical Institute researchers have discovered a new component of the machinery immune cells use to generate a remarkably diverse array of antibodies from a relatively small number of genes.



The discovery reveals important links in the molecular pathway by which complex genetic alterations arm the immune system to target myriad potential bacterial and viral invaders with swiftness and precision. The discovery may also provide welcome new information about lymphoma, a form of leukemia in which certain cells of the immune system proliferate uncontrollably.

“While this is currently pure speculation, it might be that deregulation of AID activity could lead to mutations that could be involved in the evolution of lymphoma.” Frederick W. Alt


Howard Hughes Medical Institute investigator Frederick W. Alt led the research team that published its findings August 26, 2004, in the journal Nature. Alt and lead author Jayanta Chaudhuri are at Children’s Hospital, Boston, and Harvard Medical School.

The studies focus on B cells, specialized immune cells responsible for producing antibodies, and how an enzyme in those cells known as activation-induced cytidine deaminase (AID) triggers mutations of antibody gene segments to produce an assortment of antibody proteins. This process enables the immune system to produce antibodies that will recognize billions of different antigens - the fragments of foreign invaders that are used to call the immune system to arms.

The presence of an antigen on the surface of a B cell stimulates it to produce antibodies. An important step in this process is the activation of AID, which causes largely random mutations in the genes for the antibody segments that recognize antigens. These mutations occur about a million times more frequently than spontaneous mutations in other genes. In this process, known as somatic hypermutation, AID selectively “damages” the DNA strand, prompting the DNA repair system to create the mutations.

AID also triggers class switch recombination, a highly specific process that involves recombining gene segments that encode the part of the antibody molecule that direct it where to take its antigen cargo and how to dispose of it.

A central mystery in the field of immunology, said Alt, has been how AID acts on antibody genes. In previous studies, Alt and his colleagues showed that the enzyme acts on single-stranded DNA and that, for class switch recombination, such single-stranded DNA can be unraveled from native double-stranded DNA during the process of copying its information to RNA, the cell’s template for production of antibody proteins. However, this mechanism could not explain how AID works during somatic hypermutation.

In the current work, Chaudhuri developed techniques to isolate purified AID from B cells and test its activity on the target for somatic hypermutation. In this way, he found that the enzyme requires an unknown co-factor that was critical for AID function and that this co-factor specifically interacts with AID.

Subsequent analysis revealed that Chaudhuri’s protein was replication protein A (RPA), long known to be part of the DNA replication and repair machinery that attaches to single-stranded DNA.

“RPA was never even suspected to be a candidate for such a role, since it was never suspected that it could get into DNA during RNA transcription,” said Alt. “Until now, it was only known to be involved in certain DNA replication and repair pathways.” Chaudhuri also found that after AID “damages” the DNA, it leaves the complex, but RPA remains. “We believe that RPA is sitting there on the DNA, and it’s recruiting DNA repair factors, which is a great link to the repair machinery needed for the next step in the hypermutation pathway,” said Alt. Thus, in retrospect, RPA’s involvement makes biological sense.

The other major discovery, said Alt, was that for AID to interact with RPA, AID must undergo some modification in B cells - a clue to the nature of the machinery that initiates somatic hypermutation, and a topic for future studies in Alt’s lab.

Identifying RPA’s involvement could have implications for understanding lymphomas. “Lymphomas and some mature B cell tumors are known to show aberrant somatic hypermutation and class switching,” said Alt. “Now that we know more about how the AID-RPA complex works, we can begin to address questions of how the aberrant processes might occur.

“While this is currently pure speculation, it might be that deregulation of AID activity could lead to mutations that could be involved in the evolution of lymphoma,” Alt said. “Also, there might be a mutation in AID or its co-factors that would deregulate it and cause it to target other genes,” he said.

Additional studies will seek to connect the AID-RPA complex with the cell’s repair mechanism to further elucidate the somatic hypermutation and class switch recombination processes, said Alt. “We’d like to figure out how those downstream steps in these two different situations lead in one case to mutation and in the other case to recombination,” he said. “Now that we know more about how AID links to the next steps through RPA, we can begin to address this problem, which is a major question in the field.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>