Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses on the Attack

25.08.2004


Using a combination of imaging techniques, researchers have determined the mechanics that allow some viruses to invade cells by piercing their outer membranes and digesting their cell walls. The researchers combined their findings with earlier studies to create a near-complete scenario for that form of viral assault.



The results have a dual benefit: they show the inner workings of complex, viral nanomachines infecting cells (in a process nearly identical to some viral infections of human cells) and the images provide design tips for engineers hoping to build the gene delivery devices of the future.

The study, by researchers from Purdue University and the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry in Moscow, appears in the August 20, 2004, issue of Cell.


Led by Michael Rossmann and Vadim Mesyanzhinov, the team added their findings to several decades of research into the structure of bacteriophage T4 – a virus that attacks the familiar pathogen Escherichia coli (E. coli). The work was supported by grants from the National Science Foundation, The Human Frontier Science Program and the Howard Hughes Medical Institute.

Although some strains of E. coli can cause food poisoning, other strains supply essential products to the human gut. It is possible that studies of viruses could one day help biologists develop strategies to fight deadly bacterial infections. Similar efforts targeting antibiotic-resistant bacteria are already underway in other laboratories.

The researchers combined x-ray crystallographic data, which gives 3-D atomic details of the constituent viral proteins, with cryo-electron microscopy images to determine how proteins in the T4 phage rearrange themselves during cell infection. Cryo-electron microscopy is similar to standard electron microscopy, except the specimens are first frozen to slow down radiation damage and hence improve the clarity of the images.

By combining thousands of images of the virus viewed from different directions, the researchers were able to determine a three dimensional structure at about 17 Ångstrom resolution, a distance spanned by just a few atoms. The end result is a model of how bacteriophage T4 infects cells.

Now that the researchers have established relationships between the component proteins, they will be analyzing the conformational changes that occur during infection. As part of their continuing work, the researchers are also looking at similar processes in other viruses to determine common essential features and differences related to the specific adaptation of each virus type.

From the researchers:

"The work opens up the door to further application of ‘hybrid’ techniques such as we used by combining crystallography and electron microscopy" – Michael Rossmann, Hanley Professor of Biological Sciences at Purdue University

"The results give hope that viruses might be targeted to find specific cells where they would then inject the cell with a genome that included useful new genes for the targeted cell." – Michael Rossmann

"The work is an excellent example of what can be achieved by a team effort, where each person plays a critical and vital role. We were extremely fortunate to have extraordinarily talented scientists such as Petr Leiman and Victor Kostyuchenko as well as equally talented participation of Paul Chipman who did all the electron microscopy data collection." – Michael Rossmann

From experts at NSF:

"This work shows, at the atomic level, how a bacteriophage can break through a bacterial cell wall. Researchers are using the bacteriophage components that specialize in dissolving as the core of a new and emerging strategy to fight bacterial pathogens, especially microbes that have developed resistance to traditional antibiotics." – Patrick Dennis, Program Director for Microbial Genetics at the National Science Foundation

"Viruses – these beautiful machines – are showing us how to develop nanotechnologies with a broad range of applications." – Parag Chitnis, Program Director for Molecular Biochemistry at the National Science Foundation

| newswise
Further information:
http://news.uns.purdue.edu/UNS/html4ever/2004/040820.Rossmann.baseplate.html
http://bilbo.bio.purdue.edu/~viruswww/Rossmann_home/movies.shtml
http://seyet.com/t4phage/leiman-et-al.movie-2.mov

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>