Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses on the Attack

25.08.2004


Using a combination of imaging techniques, researchers have determined the mechanics that allow some viruses to invade cells by piercing their outer membranes and digesting their cell walls. The researchers combined their findings with earlier studies to create a near-complete scenario for that form of viral assault.



The results have a dual benefit: they show the inner workings of complex, viral nanomachines infecting cells (in a process nearly identical to some viral infections of human cells) and the images provide design tips for engineers hoping to build the gene delivery devices of the future.

The study, by researchers from Purdue University and the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry in Moscow, appears in the August 20, 2004, issue of Cell.


Led by Michael Rossmann and Vadim Mesyanzhinov, the team added their findings to several decades of research into the structure of bacteriophage T4 – a virus that attacks the familiar pathogen Escherichia coli (E. coli). The work was supported by grants from the National Science Foundation, The Human Frontier Science Program and the Howard Hughes Medical Institute.

Although some strains of E. coli can cause food poisoning, other strains supply essential products to the human gut. It is possible that studies of viruses could one day help biologists develop strategies to fight deadly bacterial infections. Similar efforts targeting antibiotic-resistant bacteria are already underway in other laboratories.

The researchers combined x-ray crystallographic data, which gives 3-D atomic details of the constituent viral proteins, with cryo-electron microscopy images to determine how proteins in the T4 phage rearrange themselves during cell infection. Cryo-electron microscopy is similar to standard electron microscopy, except the specimens are first frozen to slow down radiation damage and hence improve the clarity of the images.

By combining thousands of images of the virus viewed from different directions, the researchers were able to determine a three dimensional structure at about 17 Ångstrom resolution, a distance spanned by just a few atoms. The end result is a model of how bacteriophage T4 infects cells.

Now that the researchers have established relationships between the component proteins, they will be analyzing the conformational changes that occur during infection. As part of their continuing work, the researchers are also looking at similar processes in other viruses to determine common essential features and differences related to the specific adaptation of each virus type.

From the researchers:

"The work opens up the door to further application of ‘hybrid’ techniques such as we used by combining crystallography and electron microscopy" – Michael Rossmann, Hanley Professor of Biological Sciences at Purdue University

"The results give hope that viruses might be targeted to find specific cells where they would then inject the cell with a genome that included useful new genes for the targeted cell." – Michael Rossmann

"The work is an excellent example of what can be achieved by a team effort, where each person plays a critical and vital role. We were extremely fortunate to have extraordinarily talented scientists such as Petr Leiman and Victor Kostyuchenko as well as equally talented participation of Paul Chipman who did all the electron microscopy data collection." – Michael Rossmann

From experts at NSF:

"This work shows, at the atomic level, how a bacteriophage can break through a bacterial cell wall. Researchers are using the bacteriophage components that specialize in dissolving as the core of a new and emerging strategy to fight bacterial pathogens, especially microbes that have developed resistance to traditional antibiotics." – Patrick Dennis, Program Director for Microbial Genetics at the National Science Foundation

"Viruses – these beautiful machines – are showing us how to develop nanotechnologies with a broad range of applications." – Parag Chitnis, Program Director for Molecular Biochemistry at the National Science Foundation

| newswise
Further information:
http://news.uns.purdue.edu/UNS/html4ever/2004/040820.Rossmann.baseplate.html
http://bilbo.bio.purdue.edu/~viruswww/Rossmann_home/movies.shtml
http://seyet.com/t4phage/leiman-et-al.movie-2.mov

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>