Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find clues about how antibodies specialize

24.08.2004


Gene mutations are closely targeted -- enhancing the immune response while avoiding cancer

Researchers at Children’s Hospital Boston have begun unraveling the mystery of how B lymphocytes -- key infection-fighting cells in the body -- are able to create many different kinds of specialized antibodies through selective gene mutations, while being protected from random mutations that could give rise to cancers.

The findings, reported in the Aug. 26 issue of the journal Nature, will help scientists better understand two things: how the body is able to mount a strong immune defense against foreign attackers, and how cancers, particularly lymphomas, develop and might be prevented.



B lymphocytes, or B cells, are the immune-system cells responsible for producing antibodies – proteins that recognize, bind to, and neutralize viruses and other harmful pathogens. Since there is a huge diversity of pathogens in the environment – more than our genomes could possibly anticipate and encode for -- the antibody response has to be very fluid and adaptable. The human immune system handles antibody diversification through selective mutations to specific stretches of DNA in B cells that encode immunoglobulins, the proteins from which antibodies are made. Mutations in these gene segments – to the so-called variable regions -- give our B cells the ability to make unique, specialized antibodies with high affinity for a specific invader.

This mutation process, known as somatic hypermutation, is known to require an enzyme called activation-induced cytidine deaminase (AID). But how AID targets the variable region of the immunoglobulin genes -- while leaving the rest of the genetic material in the B cell untouched -- has been a mystery.

In the biochemical study reported in Nature, the Children’s Hospital Boston researchers discovered that another protein, known as replication protein A (RPA), interacts with AID, attaches to it, and directs AID to the specific segment of the B cell’s DNA required for a tailored immune response. The study details the process by which AID is biochemically modified to promote its interaction with RPA.

"Such a targeting mechanism for AID is essential for our immune system," says Dr. Frederick W. Alt, a Howard Hughes Medical Institute researcher at the Children’s Department of Molecular Medicine and senior investigator on the study. "Without it, we’d be immunodeficient, unable to diversify our antibody repertoire."

The Children’s study also has implications for the prevention of lymphomas, notes Dr. Jayanta Chaudhuri, first author on the study and a postdoctoral fellow in Alt’s laboratory.

"The AID-RPA interaction must be regulated to bring about the specificity of the mutation," Chaudhuri says. "If this regulation is impaired for some reason, then the B cell would incur a lot of random mutations and that might lead to tumors."

The next step, then, is to figure out what sometimes goes wrong and allows the AID-RPA complex to go to the wrong regions, potentially leading to activation of cancer genes. "Now that we’ve learned how AID gets access to the variable regions, we can ask how the process goes awry to cause mutations of genes that could lead to cancer," says Alt.

RPA is found throughout the body, and is known to be involved in repairing damaged DNA, but until now, it hadn’t been known to have a role in the immune system. "We’ve discovered a new function for it," says Alt. "It’s generating quite a bit of excitement in the immunology field and promises to teach us more about the immune response."

Alt has spent his career exploring the immune system’s ability to defend against a vast array of antigens through genetic rearrangements, as well as the mechanisms the body uses to suppress genomic instability, an increased tendency toward gene mutation that can lead to cancer. In recent years, these two lines of investigation--immunology and cancer -- have intersected and informed each other.

Aaron Patnode | EurekAlert!
Further information:
http://www.harvard.edu
http://www.childrenshospital.org

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>