Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals potential new target for prostate cancer drugs

24.08.2004


This atomic-level model of part of the human androgen receptor shows the target for a potential drug against prostate cancer. New research has determined the three-dimensional, atom-by atom structure of the target. The drug would bind to the receptor, interrupting its activity which drives the disease.


Scientists have determined the precise molecular structure of a potential new target for treating prostate cancer, a disease driven in part by abnormal testosterone activity. The target is part of the androgen receptor, a protein essential for testosterone to function in human cells. Prostate cancer is the most common cancer among men.

The androgen receptor and testosterone – technically, 5-alpha dihydrotestosterone – each drive prostate cancer at different stages of the disease. A common prostate cancer treatment uses drugs that compete with testosterone, blocking its ability to bind with the androgen receptor and so reducing the hormone’s effect. But cancer tends to become resistant to these drugs. The new research provides a novel strategy to block activation of both the androgen receptor and testosterone.

UCSF scientists determined the atom-by-atom topography of the pocket where proteins known as coactivators bind to the human androgen receptor to enable testosterone to trigger gene activity. Knowing the detailed shape greatly boosts the likelihood of developing a drug to block this binding and turn off androgen receptor activity, the scientists report.



The research is being published online August 24 by Public Library of Science (PLoS) Biology. "Drugs that block testosterone binding are not effective in the long term against prostate cancer," says Robert Fletterick, PhD, UCSF professor of biochemistry and biophysics and senior author on the PloS Biology paper. "The shape of the site we have determined – where coactivators bind to the androgen receptor – specifies the design for a new class of drugs. Simple versions of the ’ultimate’ drug will be tested in cancer cells this year." With an aggressive search for the right chemicals, candidate drugs might be tested in human patients within three years, he says.

UCSF has filed for a patent revealing the nature of the coactivator site on the androgen receptor.

Fletterick, whose laboratory is based at UCSF’s Mission Bay campus, is a researcher in the California Institute for Quantitative Biomedical Research, or QB3. He collaborates with clinical cancer scientists at UCSF, and the new research is supported by an NIH SPORE grant (for Specialized Program of Research Excellence), which funds programs that effectively integrate basic research, such as Fletterick’s, with clinical research aimed at developing new clinical treatments. Fletterick’s UCSF clinical research colleagues are eager to work on developing treatments if coactivator-blocking drugs can be developed, he says.

The male hormone testosterone controls development and maintenance of the male reproductive system and other tissues such as bone and muscle. The hormone is present in smaller amounts in females, where it also helps form muscle and bones.

The scientists determined the shape of the binding pocket on the androgen receptor – technically, the coactivator binding interface – by exposing it to billions of randomly chosen protein fragments, or peptides, and selecting for those that bind best. They then imaged the peptides that bind best using a technology called X-ray diffraction that shows every atom of the peptide and the receptor, and how they interact.

The researchers are now testing the ability of different small molecules to bind to the androgen receptor binding site. They hope to demonstrate the potential of developing a drug that will bind more strongly than the normal coactivator, thereby shutting down androgen receptor activity.

Knowing the molecular shape of the target speeds development of a new drug about ten-fold, Fletterick says, and helps assure that the drug will work as expected. The new structural information from the limited number of peptides and small molecules that bind well to the coactivator sites can be used by chemists to screen from among thousands of "best-fitting" molecules to find those with the precise configuration and traits needed for a good drug to block coactivator binding, Fletterick says. In addition, chemists can use the information to synthesize new molecules with the required drug traits.

It remains uncertain whether researchers can identify a small molecule drug candidate that binds to the coactivator more strongly than the coactivators themselves do, Fletterick cautions.

Cancer researchers do not know which coactivators bind with the androgen receptor when cancer strikes, Fletterick adds. But the research may lead to selective drugs that permit "good" activators to bind while blocking those that promote cancer progression. This possibility is the focus of new research by several UCSF labs.

The highly detailed structure of the coactivator binding site revealed by the research explains the unusual behavior of this hormone’s receptor, says Eugene Hur, BS, UCSF graduate student in biophysics and lead author of the scientific paper. Most hormone receptors bind to coactivator sequences rich in the amino acid leucine, but the androgen receptor is unique in preferring bigger, bulkier bonding partners. The explanation appears to lie in the unusually deep binding region, the scientists report.

Co-authors on the paper, along with Fletterick and Hur, are Samuel J. Pfaff, BS, graduate student in biophysics at UCSF; E. Sturgis Payne, research staff; Hanne Gron, PhD, research scientist; and Benjamin M. Buehrer, PhD, project leader, all at Karo Bio in Durham, North Carolina.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

nachricht Uncovering hidden protein structures
18.06.2019 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>