Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic clues found for common congenital brain disorder

23.08.2004


Thanks to a productive collaboration between clinical and basic scientists, researchers from the University of Chicago have identified the first genetic cause of one of the most common birth defects of the brain, Dandy-Walker malformation (DWM). Infants with this disorder, about one in 10,000 births, have a small, displaced cerebellum and other brain abnormalities that can reduce coordination, impair mental function and cause hydrocephalus.



In the September, 2004, issue of Nature Genetics -- to be published online August 22 -- the researchers show that in humans, loss of one copy of each of two adjacent genes, known as ZIC1 and ZIC4, causes Dandy-Walker. The researchers then used this finding to create a mouse model to allow them to study the developmental basis of the disorder.

"Dandy-Walker malformation is an important clinical problem as well as a scientific mystery," said study co-author William Dobyns, M.D., professor of human genetics, neurology and pediatrics at the University of Chicago and an author of the study. "We see about 20 cases per year, but until recently, there was not even an understanding that Dandy-Walker had a genetic basis."


"Knowing more about the genes also should improve our ability to make a prenatal diagnosis," he added, "which has always relied upon ultrasound. Finding the genes will help us inform parents about the risks of having another affected child."

"This discovery provides one of the first real avenues for understanding human birth defects that affect the cerebellum," said study author Kathleen Millen, Ph.D., assistant professor of human genetics at the University of Chicago. "Until now, we have had no understanding of what goes wrong during development to cause this malformation. We now know some of the genes involved and have a mouse model to study to figure this out."

This work may also have broader implications. Understanding what goes wrong in Dandy-Walker malformation could provide clues about autism, in which similar but much milder cerebellar abnormalities are common. The hunt for the Dandy-Walker genes began when a child from Kansas with a missing piece of chromosome 3 was found to have DWM and was referred to Dr. Dobyns for an evaluation. Inspired by this clue, Inessa Grinberg, an M.D./Ph.D. student working with Millen and Dobyns, began to scour the Internet looking for parent support web sites for children with DWM, and for separate web sites for parents of children with chromosome 3 abnormalities.

The team eventually found eight patients -- including five found via the Internet -- who had overlapping deletions of genetic material from chromosome 3. This narrowed the search to one part of that chromosome. Although the implicated region contained an estimated 15 genes, two were likely candidates. ZIC1, short for Zinc finger in cerebellum 1, was a known gene that played a role in development of the cerebellum in mice. ZIC4 was previously uncharacterized but was similar to ZIC1.

When the researchers generated mice with altered ZIC1 and ZIC4 genes they found a syndrome virtually identical to the human disorder. Mice with one dysfunctional copy of either gene had mild anatomic abnormalities but no behavioral changes. But about 15 percent of the mice that had one normal and one abnormal version of both ZIC1 and ZIC4 had abnormalities in the cerebellum that were very similar to the brains of patients with Dandy-Walker. They also lacked coordination and were unable to right themselves if they fell over.

Although the authors conclude that "heterozygous loss of ZIC1 and ZIC4 is the cause of Dandy-Walker malformation in deletion 3q2 patients," they caution that other genes are clearly involved, which is why only 15 percent of the mice with the characteristic deletions had severe symptoms. "The genetics of Dandy-Walker are very complicated," said Dr. Millen.

"We still don’t know all we want to know about this disorder," added Dobyns, "but now we have a foot in the door for understanding this and other cerebellar defects."

A genetic test could improve prenatal diagnosis. Currently, detecting Dandy-Walker with ultrasound images is difficult and often uncertain until late in a pregnancy, usually after 20 weeks. Most parents, fearing mental retardation, choose to terminate the pregnancy if the disorder is diagnosed soon enough. A reliable genetic test could provide better information earlier and could be used to reassure parents that a subsequent pregnancy was normal.

The story of Dandy-Walker malformation has come full circle, note the authors. The name comes from the physicians Walter Dandy of Johns Hopkins, and Earl Walker, who was a neurosurgeon at the University of Chicago in 1942 when he described the malformation that was subsequently named after him. "Finding these genes here at the University of Chicago is a kind of ’coming home’ story," Millen said.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>