Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PCB breakdown in rivers depends on sediment-specific bacteria

23.08.2004


First-ever side-by-side comparison of PCB-laden sediments taken from separate, contaminated rivers

One of Mother Nature’s most promising weapons to break down persistent, toxic polychlorinated biphenyls (PCBs) is bacteria. Now, a study by Carnegie Mellon University scientists provides convincing evidence that how quickly a PCB gets eaten and what it becomes depends on where it settles. Using DNA fingerprinting, the Carnegie Mellon team discovered distinct bacterial populations in the first-ever side-by-side comparison of PCB-laden sediments taken from separate, contaminated rivers. The results are being reported by graduate student Christine Wang on Sunday, Aug. 22, at the 228th annual meeting of the American Chemical Society (ACS) in Philadelphia, Pa. (ENVR 12, Loews -- Commonwealth B).

The investigators studied sediments taken from two rivers in upstate New York where local industries had released PCBs over several decades. They found that bacteria in contaminated Hudson River sediment were faster at digesting an introduced PCB compared with sluggish bacterial cousins at work in contaminated Grasse River sediment.



"Our goal is to determine the roles that different bacterial populations play in PCB breakdown by identifying the kinds of microbes in river sediments as well as their population size and how they remove chlorine atoms from the PCB structure," said William Brown, Ph.D., professor of biological sciences and a principal investigator on the study. "This work tells us that PCB-digesting microbes need to be examined in each contaminated lake or river to understand the fate of PCBs at different sites."

Co-investigators on the team include Edwin Minkley, director, Center for Biotechnology and Environmental Processes in the Department of Biological Sciences, and Jeanne VanBriesen, assistant professor of civil and environmental engineering.

The team is exploring whether different nutrients or other factors could account for the variation between PCB-digesting microbial communities taken from the two rivers.

The research team ultimately hopes to coax bacteria with a preference for PCBs into becoming more dominant life-forms in sediments. Future studies that modify nutrients in sediments from contaminated sites with little or no bacterial activity also could reveal ways to transform sites with poor eaters into areas that grow microbes with healthy appetites for PCBs.

Ideally, the investigators could identify a combination of nutrients or other factors that could be added to river sediments to accelerate the breakdown of PCBs in situ, without having to dredge a river. Should dredging be needed, their research also could identify ways to break down PCBs in sediments that are disposed in secure, hazardous waste landfills. Ultimately, the team’s work could result in approaches that detoxify PCBs much more thoroughly and much faster than any existing method.

While other studies have shown that unique populations of PCB-digesting microbes inhabit different waterways, the investigators believe that this is the first side-by-side comparison of populations using the same experimental approaches under identical conditions.
Despite 30 years of scientific investigation and search for remediation approaches, the contamination of waterways with PCBs remains a pressing environmental challenge. A mixture of 209 related chemicals, PCBs accumulate in fish and birds high in the food chain, crippling their ability to reproduce. These agents also build up in humans, where they are suspected of harming reproduction, causing cancer, injuring the immune system and thyroid gland, and impairing learning and memory.

PCBs were generated worldwide largely by industries that manufactured plastics, paints, lubricants, transformers and other materials. In the mid-20th century, companies along the Hudson and other rivers in upstate New York collectively released more than one million pounds of PCBs into the water, not knowing that these pollutants could linger for thousands of years. While U.S. production ceased in 1978, PCBs continue to endanger waterways across the United States from historic and ongoing uncontrolled releases.

This research is part of a large-scale, interdisciplinary project funded by the Packard Foundation to understand the environmental fate and persistence of PCBs. The project, "Effects of Sediment Biogeochemistry on the Environmental Fate and Persistence of Polychlorinated Biphenyls," is led by David Dzombak, professor of civil and environmental engineering at Carnegie Mellon. This work is being presented as part of a multi-institutional ACS meeting symposium, "PCBs in Freshwater and Marine Sediments: Transport, Transformation, and Treatment," organized by Dzombak and colleague Greg Lowry, assistant professor of civil and environmental engineering.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Life Sciences:

nachricht New study finds distinct microbes living next to corals
22.05.2019 | Woods Hole Oceanographic Institution

nachricht Summit charts a course to uncover the origins of genetic diseases
22.05.2019 | DOE/Oak Ridge National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>