Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PCB breakdown in rivers depends on sediment-specific bacteria

23.08.2004


First-ever side-by-side comparison of PCB-laden sediments taken from separate, contaminated rivers

One of Mother Nature’s most promising weapons to break down persistent, toxic polychlorinated biphenyls (PCBs) is bacteria. Now, a study by Carnegie Mellon University scientists provides convincing evidence that how quickly a PCB gets eaten and what it becomes depends on where it settles. Using DNA fingerprinting, the Carnegie Mellon team discovered distinct bacterial populations in the first-ever side-by-side comparison of PCB-laden sediments taken from separate, contaminated rivers. The results are being reported by graduate student Christine Wang on Sunday, Aug. 22, at the 228th annual meeting of the American Chemical Society (ACS) in Philadelphia, Pa. (ENVR 12, Loews -- Commonwealth B).

The investigators studied sediments taken from two rivers in upstate New York where local industries had released PCBs over several decades. They found that bacteria in contaminated Hudson River sediment were faster at digesting an introduced PCB compared with sluggish bacterial cousins at work in contaminated Grasse River sediment.



"Our goal is to determine the roles that different bacterial populations play in PCB breakdown by identifying the kinds of microbes in river sediments as well as their population size and how they remove chlorine atoms from the PCB structure," said William Brown, Ph.D., professor of biological sciences and a principal investigator on the study. "This work tells us that PCB-digesting microbes need to be examined in each contaminated lake or river to understand the fate of PCBs at different sites."

Co-investigators on the team include Edwin Minkley, director, Center for Biotechnology and Environmental Processes in the Department of Biological Sciences, and Jeanne VanBriesen, assistant professor of civil and environmental engineering.

The team is exploring whether different nutrients or other factors could account for the variation between PCB-digesting microbial communities taken from the two rivers.

The research team ultimately hopes to coax bacteria with a preference for PCBs into becoming more dominant life-forms in sediments. Future studies that modify nutrients in sediments from contaminated sites with little or no bacterial activity also could reveal ways to transform sites with poor eaters into areas that grow microbes with healthy appetites for PCBs.

Ideally, the investigators could identify a combination of nutrients or other factors that could be added to river sediments to accelerate the breakdown of PCBs in situ, without having to dredge a river. Should dredging be needed, their research also could identify ways to break down PCBs in sediments that are disposed in secure, hazardous waste landfills. Ultimately, the team’s work could result in approaches that detoxify PCBs much more thoroughly and much faster than any existing method.

While other studies have shown that unique populations of PCB-digesting microbes inhabit different waterways, the investigators believe that this is the first side-by-side comparison of populations using the same experimental approaches under identical conditions.
Despite 30 years of scientific investigation and search for remediation approaches, the contamination of waterways with PCBs remains a pressing environmental challenge. A mixture of 209 related chemicals, PCBs accumulate in fish and birds high in the food chain, crippling their ability to reproduce. These agents also build up in humans, where they are suspected of harming reproduction, causing cancer, injuring the immune system and thyroid gland, and impairing learning and memory.

PCBs were generated worldwide largely by industries that manufactured plastics, paints, lubricants, transformers and other materials. In the mid-20th century, companies along the Hudson and other rivers in upstate New York collectively released more than one million pounds of PCBs into the water, not knowing that these pollutants could linger for thousands of years. While U.S. production ceased in 1978, PCBs continue to endanger waterways across the United States from historic and ongoing uncontrolled releases.

This research is part of a large-scale, interdisciplinary project funded by the Packard Foundation to understand the environmental fate and persistence of PCBs. The project, "Effects of Sediment Biogeochemistry on the Environmental Fate and Persistence of Polychlorinated Biphenyls," is led by David Dzombak, professor of civil and environmental engineering at Carnegie Mellon. This work is being presented as part of a multi-institutional ACS meeting symposium, "PCBs in Freshwater and Marine Sediments: Transport, Transformation, and Treatment," organized by Dzombak and colleague Greg Lowry, assistant professor of civil and environmental engineering.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Life Sciences:

nachricht Phagocytes versus killer cells - A closer look into the tumour tissue
21.10.2019 | Universität Duisburg-Essen

nachricht How intestinal cells renew themselves – the role of Klumpfuss in cell differentiation
21.10.2019 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics

21.10.2019 | Materials Sciences

For EVs with higher range: Take greater advantage of the potential offered by lightweight construction materials

21.10.2019 | Materials Sciences

Benefit and risk: Meta-analysis draws a heterogeneous picture of drug-coated balloon angioplasty

21.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>