Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reinvent DNA as template to produce organic molecules

20.08.2004


New technique, reported in Science, unites organic fragments by piggybacking on DNA strands



By piggybacking small organic molecules onto short strands of DNA, chemists at Harvard University have developed an innovative new method of using DNA as a blueprint not for proteins but for collections of complex synthetic molecules. The researchers will report on the prolific technique, dubbed "DNA-templated library synthesis," this week on the web site of the journal Science.

"The basic structures of proteins and nucleic acids seem limited when compared with the structures that can be created using modern synthetic chemistry, and yet this very modest set of protein and nucleic acid building blocks has given rise to the incredible complexity and diversity of living systems," says David R. Liu, associate professor of chemistry and chemical biology at Harvard. "We’re interested in marrying fundamental features of biomolecules with synthetic organic chemistry in order to apply techniques such as translation, selection, and amplification to molecules beyond those found in cells and organisms."


Liu and his colleagues attached organic molecules to single DNA strands, each containing 10 DNA bases (A, C, G, or T). When two DNA strands with complementary sequences (A matches T, G matches C) spontaneously bond together, their associated organic molecules undergo a chemical reaction to generate a product. As a result, the DNA strands essentially serve as a miniature, sequence-programmable assembly line for products of chemical synthesis.

Because the resulting synthetic compounds are linked to DNA, techniques long used to screen and amplify the genetic mainstay can now be applied. Molecules can be "selected" for desired functional properties, and the survivors of these selections can then be copied using the polymerase chain reaction (PCR).

The application of DNA-templated synthesis has enabled a collection of DNA strands to be transformed into a corresponding collection of sequence-programmed small macrocyclic molecules with potentially interesting chemical and biological properties. A single member of the collection survived a selection on the basis of its ability to bind to a protein target, and the DNA encoding the survivor was amplified by PCR and sequenced to reveal its identity.

Liu’s team found that small molecules bound to DNA can react to form larger products even when the DNA bases used to zip together the small molecules are far apart on a DNA template. This means that a template strand of 30 DNA bases, complementary to Liu’s DNA codes for three different organic molecules, can encode three separate chemical reactions, leading to the multistep DNA-programmed synthesis of relatively complex cyclic products.

Chemical synthesis occurs very differently in laboratories and in cells. Chemists typically work with molecules that react to form products when they randomly collide at high concentrations. By contrast, biomolecules are found within cells at concentrations that are often a million times lower than the concentrations of molecules in laboratory reactors. In nature, the reactions between these highly dilute molecules are directed by enzymes that selectively bring certain biological reactants together. Liu and his colleagues are now using DNA as a similar type of intermediary to bring together synthetic small molecules that are otherwise too dilute to react, allowing minute quantities of sparse molecules to behave as denser mixtures when assembled together by DNA base pairing.

"We recognized that in order to apply such an approach to as many synthetic molecules as possible, we’d have to use a different type of template than an enzyme," Liu says. "The natural and robust zipping up of complementary DNA strands is a simple way to bring molecules at low concentrations together without having to develop an entirely new class of enzymes for each different type of molecule."

The 10-base DNA strands used by Liu’s team are large enough to be stable at room temperature and in theory can encode thousands of individual small organic molecules.

Liu’s co-authors are Zev J. Gartner, Brian N. Tse, Rozalina Grubina, Jeffrey B. Doyon, and Thomas M. Snyder, all of Harvard’s Department of Chemistry and Chemical Biology. Their work was funded by the National Institute of General Medical Sciences at the National Institutes of Health, the Office of Naval Research, the Arnold and Mabel Beckman Foundation, the Searle Scholars Foundation, the Alfred P. Sloan Foundation, and fellowships from Bristol-Myers Squibb and the National Science Foundation.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>