Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New brain protein regulates sleep and anxiety

19.08.2004


Findings point to a different way to treat sleep disorders and anxiety



UC Irvine pharmacology researchers have found how a recently discovered brain protein plays a major role regulating sleep and stress – a discovery that can lead to a new class of drugs for treating ailments ranging from sleep and anxiety disorders to attention deficit disorder.

The UCI team conducted tests to see how neuropeptide S (NPS) affected behavioral responses in rodents. They found that NPS increases alertness, suppresses sleep and even controls stress responses. This establishes NPS, which was first discovered in 2002, as an important modulator of sleep and alertness. This study also suggests NPS has potential as a target for new drugs to treat sleep disorders. The study appears in the Aug. 19 issue of Neuron.


"Since our knowledge of NPS is so new, we may be at the tip of the iceberg in understanding its function," said Rainer Reinscheid, assistant adjunct professor in pharmacology and lead researcher in the study. "We’ve found NPS to be so active with sleep and anxiety behavior that it can be a very attractive drug target, both to enhance and to suppress its function."

In testing how NPS is involved with both sleep regulation and stress behaviors, the researchers found that NPS is produced by previously unidentified neurons in a brain stem region known for regulating arousal and anxiety. Further tests demonstrated that rats injected with NPS showed increased alertness and reduced slow-wave and REM sleep over untreated rats.

NPS receptor proteins were also detected in stress-related brain regions such as the amygdala and thalamus. In behavior tests that measure their stress-related anxiety, mice injected with NPS show fewer anxiety responses and increased activity than untreated mice. Sleep and fatigue are in a balance – insufficient sleep will increase fatigue, and only sleeping can reduce fatigue. There is a variety of sleep and fatigue disorders, which range from the most severe affecting only a set of individuals to mild ones nearly everyone will encounter.

The most severe form of sleep disorder is narcolepsy, in which affected individuals suffer from irresistible sleep attacks. Most common is the excessive daytime sleepiness that may result from chronic sleep deprivation or sleep impairments. Very little is known about the basic mechanisms that regulate these physiological responses, but the UCI study provides a first glance at a neuropeptide that affects these sleep mechanisms.

"Some 100,000 Americans are currently treated for excessive daytime sleepiness, but the number of the undiagnosed is far larger," said study co-author Olivier Civelli, the Eric L. and Lila D. Nelson Chair in Neuropharmacology at UCI. "Furthermore, symptoms of sleepiness, often recognized as fatigue, are associated with numerous other illnesses, such as multiple sclerosis, Parkinson’s disease and also depression. If it can be shown that the NPS system is a major modulator of fatigue, then its therapeutic potentials will be immense."

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>