Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New brain protein regulates sleep and anxiety

19.08.2004


Findings point to a different way to treat sleep disorders and anxiety



UC Irvine pharmacology researchers have found how a recently discovered brain protein plays a major role regulating sleep and stress – a discovery that can lead to a new class of drugs for treating ailments ranging from sleep and anxiety disorders to attention deficit disorder.

The UCI team conducted tests to see how neuropeptide S (NPS) affected behavioral responses in rodents. They found that NPS increases alertness, suppresses sleep and even controls stress responses. This establishes NPS, which was first discovered in 2002, as an important modulator of sleep and alertness. This study also suggests NPS has potential as a target for new drugs to treat sleep disorders. The study appears in the Aug. 19 issue of Neuron.


"Since our knowledge of NPS is so new, we may be at the tip of the iceberg in understanding its function," said Rainer Reinscheid, assistant adjunct professor in pharmacology and lead researcher in the study. "We’ve found NPS to be so active with sleep and anxiety behavior that it can be a very attractive drug target, both to enhance and to suppress its function."

In testing how NPS is involved with both sleep regulation and stress behaviors, the researchers found that NPS is produced by previously unidentified neurons in a brain stem region known for regulating arousal and anxiety. Further tests demonstrated that rats injected with NPS showed increased alertness and reduced slow-wave and REM sleep over untreated rats.

NPS receptor proteins were also detected in stress-related brain regions such as the amygdala and thalamus. In behavior tests that measure their stress-related anxiety, mice injected with NPS show fewer anxiety responses and increased activity than untreated mice. Sleep and fatigue are in a balance – insufficient sleep will increase fatigue, and only sleeping can reduce fatigue. There is a variety of sleep and fatigue disorders, which range from the most severe affecting only a set of individuals to mild ones nearly everyone will encounter.

The most severe form of sleep disorder is narcolepsy, in which affected individuals suffer from irresistible sleep attacks. Most common is the excessive daytime sleepiness that may result from chronic sleep deprivation or sleep impairments. Very little is known about the basic mechanisms that regulate these physiological responses, but the UCI study provides a first glance at a neuropeptide that affects these sleep mechanisms.

"Some 100,000 Americans are currently treated for excessive daytime sleepiness, but the number of the undiagnosed is far larger," said study co-author Olivier Civelli, the Eric L. and Lila D. Nelson Chair in Neuropharmacology at UCI. "Furthermore, symptoms of sleepiness, often recognized as fatigue, are associated with numerous other illnesses, such as multiple sclerosis, Parkinson’s disease and also depression. If it can be shown that the NPS system is a major modulator of fatigue, then its therapeutic potentials will be immense."

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>