Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic ‘Conflict’ May Affect Obesity

17.08.2004


Scientists at the Babraham Institute have discovered that conflict between genes inherited from our parents may affect our ability to adapt to life after birth, and have lasting effects on our weight. We inherit similar sets of genes from both our parents, but of a small number of genes only one of the copies is active, the copy from the other parent being ‘imprinted’ to be silent.



The research group, headed by Dr Gavin Kelsey has published a study in Nature Genetics which describes the effects of altering an imprinted gene in mice that specifies a controller of hormone action. This shows that imprinting has important effects on the way young interact with their mothers, and how they regulate their food intake and metabolism.

This work provides more evidence that instead of co-operating, some genes that we inherit from our parents can be in conflict. The imprinted genes received from fathers make greater demands on mothers, whilst imprinted genes from mothers are more conservative. It appears to be crucial that we have the right balance of imprinted genes.


Dr Kelsey comments “Our work also shows that this balance may be important for a wide range of physiological effects relevant to our health, such as controlling blood sugar and obesity. Although removing the imprinted gene leads to ‘slim’ mice, more work needs to be done before we can apply this theory to humans”.

Emma Southern | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Family of crop viruses revealed at high resolution for the first time
15.10.2019 | John Innes Centre

nachricht Receptor complexes on the assembly line
15.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

New material captures carbon dioxide

15.10.2019 | Materials Sciences

Drugs for better long-term treatment of poorly controlled asthma discovered

15.10.2019 | Interdisciplinary Research

Family of crop viruses revealed at high resolution for the first time

15.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>