Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find gene expression pattern may predict behavior of leukemia

11.08.2004


The expression pattern of certain genes may someday help doctors to diagnose and predict whether or not an individual has an aggressive form of B-cell chronic lymphocytic leukemia (CLL), Jefferson cancer researchers have found.



Scientists, led by Carlo Croce, M.D., director of Jefferson’s Kimmel Cancer Center and professor and chair of microbiology and immunology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, looked at the expression of genes that encoded microRNAs (miRNAs), tiny pieces of genetic material that are thought to be important in the regulation of gene expression and in the development of cancer. MiRNAs can serve as stop signs for gene expression and protein synthesis, and are thought to play important roles in regulating gene expression in development.

Reporting in both the online and the August 10 print version of the Proceedings of the National Academy of Sciences, the researchers – taking advantage of a microarray chip Dr. Croce and his colleagues designed that carries all the known human miRNA genes – compared the expression of miRNA genes in human CLL samples with that of normal white blood cells, or lymphocytes, called CD5+ B cells. CLL, the most common adult leukemia in the Western world, is characterized by an abnormal increase in the number of B cells.


"We found two specific genetic signatures," Dr. Croce says. One expression pattern of miRNA genes in CLL correlated with a deletion of a chromosomal region called 13q14. This region contained two small miRNA genes that are turned off in about 60 percent of CLL cases. The deletions at 13q14 represent an indicator of a good prognosis for the disease, he notes.

The other miRNA signature was associated with mutations in the Ig or immunoglobulin gene, which also indicates a good prognosis, says Dr. Croce. The researchers also found that the expression of one of the miRNA genes, miR-16, was reduced in both signatures.

"This suggests that CLL involves changes in miRNA, and that you can predict the behavior of CLL depending on the miRNA genetic signature," says Dr. Croce. "We think we might be able to predict CLL behavior based on the miR-16 signature because that is the only common denominator between the two signatures with good prognosis." But before using miRNA expression as any kind of clinical biomarker, says Dr. Croce, the results need to be verified in a clinical trial screening thousands of patients.

Dr. Croce and his colleagues had previously shown that deletions in miRNA genes were involved in B-cell CLL. They also had reported that human miRNA genes are frequently located at sites of the genome that are altered in human cancers.

The work might enable scientists to gain a better understanding of the roles of miRNAs in cancer and provide targets for future drug development.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>