Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discoveries in neuroscience

09.08.2004


Malaria drug blocks brain conduits, a boon for neuroscience research

Brown University researchers have discovered that mefloquine, an anti-malarial drug, blocks two gap junction proteins, or connexins, in low doses and with very few side effects in the brains of laboratory mice. The work opens an important door: Connexins found in high concentrations in the brain are believed to play a critical role in movement, vision and memory.

To understand how these communication "tunnels" work, scientists must be able to shut them off. Once those tunnels are disabled, researchers can pinpoint the information that connexins pass between nerve cells and determine how that information affects how the body’s development and function.



A technique already exists to study connexins.

Scientists can remove, or "knock out," genes that hold the recipe for connexins, then study the results in mice. But the Brown University scientists who worked on the experiment – Barry Connors, professor of neuroscience, and Scott Cruikshank, research associate – said "knockout mice" aren’t a perfect model. As mice – and humans – grow, they can compensate for missing genes by turning other genes on or off and cooking up other protein recipes. These biochemical changes can make it difficult to recognize connexins’ role.

But mefloquine in adult mice precisely and potently blocks connexins called Cx36 and Cx50. There are about 20 kinds of connexins in the brain and eye, as well in organs such as the heart, liver and pancreas. Cx36 is found in the brain; Cx50 is located in the lens. By specifically blocking them, Cruikshank said mefloquine will be a useful tool for electrical synapse study.

"Mefloquine isn’t a magic bullet, but it seems to be better than anything out there," he said. "It’s a lot more selective, so it has real utility for science."

Connors said the discovery, detailed in the online early edition of the Proceedings of the National Academy of Sciences for the week of August 2, could shed light on the cause of epilepsy and seizures. Scientists suspect that a Cx36 mutation causes these common neurological conditions, which occur when the messages swapped between synapses get scrambled. Meanwhile, a Cx50 mutation can form cataracts in mice.

"Electrical synapses were only discovered in the neocortex of mammals five years ago," Connors said, "so they are still a mystery. What do they control? How? When? These are big questions in neuroscience and this drug will help us answer some of them."

Conducted with scientists at Albert Einstein College of Medicine in New York and funded by the National Institutes of Health, the research offered up an intriguing secondary finding.

In rare cases, mefloquine can cause anxiety, panic attacks, depression and other psychotic side effects. Doctors have never understood why. Connors and Cruikshank said their research may hold the answer: Connexin shut-down in the brain.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>