Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Full promise of genomics in disease research yet to be realized

06.08.2004


Over the past decade genomics has revolutionized our understanding of how microorganisms cause disease. However, genomic studies need to be extended to a more diverse array of microorganisms and research tools improved to gain additional insights into pathogenesis, according to a new report released by the American Academy of Microbiology.

Genomic studies have placed a comprehensive understanding of pathogenesis in sight, but much work lies ahead, according to the report, The Genomics of Disease-Causing Organisms: Mapping a Strategy for Discovery and Defense. The report is based on the findings of a colloquium convened by the Academy in Key Largo, Florida, in November 2003. Professionals in the fields of genomics, bacteriology, virology, eukaryotic microbiology, medicine, clinical diagnostics, bioinformatics and forensics participated in discussions on the recent advancements in the field and the outlook for future research.

"Genomics has had a profound and lasting impact on the study of pathogens and disease, to the extent that it is difficult to imagine what the science would be like today in the absence of genomics," says Richard J. Roberts, Chair of the Colloquium Steering Committee. "Today a genome sequence is the first priority when investigating an emerging infectious disease, and vaccines and therapies are often designed straight from the genome."



Since the first completed genome of a pathogenic bacterium was announced in 1995, over 100 bacterial pathogens and over 1,000 viruses have been sequenced. These genomes have led to revolutions in disease research. For example, genome data can help to globally track and identify existing and new diseases, such as in the case of SARS. Genomics has identified the genetic signatures that today are being used in bioforensics to allow authorities to investigate cases of suspected bioterrorism. Some of the recent drugs in the arsenal against AIDS were designed using information from the HIV genome.

Certain themes have emerged from the analyses of pathogen genome sequences and the possibility exists that a "common thread" genetic sequence may be found linking pathogens of wildly different species, says the report. Finding such a "Rosetta Stone" of pathogenesis could ultimately expedite disease control and prevention.

For continuing progress the report specifically recommends greatly increasing the library of genomes to include not only more pathogenic microorganisms but also sequences of their hosts, nonpathogenic relatives, and a diverse array of unrelated microorganisms. All are needed to complete the picture of pathogenesis and provide a framework for understanding disease.

Additionally, the most important tools in genomics are inadequate, says the report. Improvements are especially needed in annotation methodologies and sequence databases.

Jim Sliwa | EurekAlert!
Further information:
http://www.asm.org

More articles from Life Sciences:

nachricht Sneaking up on tiny crystals with electron diffraction
24.02.2020 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Brain cells protect muscles from wasting away
24.02.2020 | University of California - Berkeley

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

A genetic map for maize

24.02.2020 | Agricultural and Forestry Science

Where is the greatest risk to our mineral resource supplies?

24.02.2020 | Earth Sciences

Computer vision is used for boosting pest control efficacy via sterile insect technique

24.02.2020 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>