Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular therapeutics advance fight against brain cancer

05.08.2004


An estimated 41,000 new cases of primary brain tumors are expected to be diagnosed in 2004, according to the American Brain Tumor Association. To further narrow the gap between diagnosis and effective therapy, physicians at the University of Pennsylvania Health System now offer several promising approaches to brain tumor treatment, including novel imaging for oncologic neurosurgery and refined genetic testing for tumors to better target treatment.

Through enhanced magnetic resonance imaging (MRI), newer and broader information is helping to better guide tumor removal. MRI is used to measure the anatomy and metabolism of tumors. This informs surgeons pre- and post-operatively with a three-dimensional map of tumor-associated blood flow to more precisely assess the full extent of tumor growth versus conventional imaging methods. "This novel approach helps guide surgery and assessment of treatment response," says Donald M. O’Rourke, M.D., Associate Professor of Neurosurgery. These novel imaging methods are leading to increased patient survival by allowing for greater tumor removal in a safe manner.

Neuroscientists are also ushering in a new era in which genetics will dictate treatment. In the 1990s researchers noted that a more favorable prognosis in patients with certain brain tumors, primarily oligodendrogliomas, was associated with a deletion of genes on chromosomes 1 and 19. This genetic loss translates into a significant life-expectancy gain for some patients and is therefore a robust predictor that post-surgery chemotherapy should be given to such patients.



Patients with the genetic deletion on chromosome 1 have a median survival in certain cases of about 10 years and respond particularly well to chemotherapy given immediately after surgery. Patients with the deletion have slower-growing tumors and show a better response to chemotherapy; whereas, those without the deletion have relatively faster-growing tumors and are less responsive to chemotherapy, so radiation therapy is required sooner. "Given the expected increase in the life-span of patients with this deletion, there is no need to give radiation therapy early in their treatment," explains O’Rourke.

The deletion can only be detected by genetic analysis. "Under the microscope these tumors can look identical, so there’s no way of knowing the difference unless a genetic analysis is performed," explains O’Rourke.

Having the ability to provide such genetic testing to determine treatment is of benefit to patients. "The idea of using a genetic test to predict prognosis and select therapy, thereby deferring potentially deleterious treatment is tremendously attractive," says O’Rourke. "Penn’s genetic testing is done in-house, so patients don’t have to wait for the results." Further, there is no cost to the patient at this point since the tests are performed by the Neuro-oncology Program and supported by the Abramson Cancer Center at Penn. In addition, there is no requirement for additional blood samples, so results will be given more quickly with no need for follow-up visits.

Penn colleagues J. Carl Oberholtzer, MD, PhD, Department of Neuropathology and Myrna Rosenfeld, MD, PhD, Department of Neurology and Director of the Division of Neuro-oncology as well as Jaclyn Biegel, PhD, Director of Cytogenetics, Children’s Hospital of Philadelphia, collaborated with O’Rourke on developing the genetic testing program. Dr. Biegel’s laboratory performs the genetic test and has significant experience with genetic testing of brain tumors.

O’Rourke is also Director of the Human Brain Tumor Tissue Bank at Penn, one of only a few such dedicated banks in the United States. Tissue banks allow for the direct evaluation of human tumors and are one of the best ways to advance treatment options for gliomas and other human cancers. O’Rourke’s basic research interests include finding new treatments for gliomas based on genetic alterations detected in tumors. He is currently investigating a variant of the epidermal growth factor receptor that is present in many primary glioblastomas to better understand the development of malignancy in the brain and how it relates to cancer cell division, survival, and movement.

Karen Kreeger | EurekAlert!
Further information:
http://www.upenn.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

Stanford researcher deciphers flows that help bacteria feed and organize biofilms

13.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>