Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech’s smelly ’corpse plant’ due to bloom Aug. 4

03.08.2004


Virginia Tech has a second Amorphophallus titanum, or "corpse plant," ready to bloom and emit its intensely powerful stench. People are invited to tie bandanas over their noses and come see the rare and unusual plant.




The horticulture greenhouse containing the plant is open to visitors Monday through Friday, July 26-30, and August 2-6, from 8 a.m. to 4 p.m. The likely date for the plant to bloom is Wednesday, Aug. 4, said Scott Rapier, greenhouse manager in the Department of Horticulture in Virginia Tech’s College of Agriculture and Life Sciences; follow the plant’s progress on the web at http://www.hort.vt.edu/VTHG/ if you want to see it on the date it blooms.

Although a blooming Amorphophallus titanum, or titan arum, is rarely seen, Virginia Tech’s first bloomed in August 2002, drawing crowds who braved the odor and the football traffic to see it. The smelly plant is rare because it puts forth one blossom every four to 10 years. This year, the second plant, located in Virginia Tech’s greenhouse complex, should bloom ahead of football traffic, making it easier for the public to visit the greenhouse. The first of these plants in the United States bloomed in 1937 at the New York Botanical Garden, and since, only about 20 have bloomed in this country.


In 1999, when the plant bloomed in the Huntington Botanical Garden in California, more than 76,000 visitors held their noses and went to see it. In Fairchild Garden in Florida, 5,500 visitors made the trek to see the infamous blossom; and at the Botanic Garden of the University of Bonn, Germany, the line to see the flowering titan arum extended more than two miles.

The plant invests a lot of energy during blooming to heat up the sulfur-based compound in the flower stalk so the carrion-like odor will spread several feet away from the plant to attract pollinators. The plant blooms seldom because of the amount of energy needed to bloom. To add to the plant’s humiliation, its pollinators include carrion beetles and flesh flies.

In spite of the plant’s long preparation for its flowery display, the blooms last, at best, two to three days, so visitors will have to be vigilant to see and smell it. A flowering stalk can be seven to 12 feet in height and three to four feet in diameter. After the bloom dies, a leaf stalk resembling a tree sapling will begin to emerge.

The plant was first discovered in 1878 in Indonesia, first cultivated at the Royal Botanic Gardens in England in 1887. The titan arum is in the same plant family as familiar house plants such as Dieffenbachia, Philodendrons, and Anthuriums.

To get to the greenhouse from Rt. 460, turn onto the Virginia Tech campus at Southgate Drive, turn left on Duck Pond Road, and right on Washington Street. Very shortly, you will see the greenhouses on the right. After taking the road into the greenhouse complex and reaching a gravel section between the glass and fiberglass greenhouses, stop at the first fiberglass greenhouse, number F-6, where the plant is located. Or follow your nose.

Sally Harris | EurekAlert!
Further information:
http://www.vt.edu
http://www.hort.vt.edu/VTHG/

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>