Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising ’Remodeling’ Property of Gene Regulation Process

02.08.2004


Much like moving furniture around to create more space, cells dramatically rearrange their entire genome in order to allow the right genes to be turned on at the right time, new research at the University of North Carolina at Chapel Hill shows.

This extensive chromosomal "remodeling" is accomplished by moving DNA packaging structures called nucleosomes to different spots in the genome. Once a nucleosome is moved from a site, the appropriate gene then can be expressed much more efficiently.

The new findings appear online in the journal Nature Genetics. The study will be published in the August print edition.



The UNC researchers also discovered that when a gene needs to be turned off, the cell recruits the nucleosomes back to a particular location in the genome, thus helping to ensure that expression of the gene is stopped.

Nucleosomes are complexes of proteins that were thought to simply bind to genomic DNA and condense it into structures called chromatin that can fit inside a cell’s nucleus. It was historically assumed that nucleosomes were uniformly distributed throughout the genome and that this distribution was unchanging. The new study overturns this assumption, the UNC researchers said. "Except for at a few genes, it was traditionally thought that there was a monotonic organization of chromatin that did not vary throughout the genome," said senior author Dr. Jason Lieb, assistant professor of biology in UNC’s College of Arts and Sciences and a member of the Carolina Center for Genome Sciences. "But chromatin is a dynamic thing - much more dynamic than was once thought."

The study also suggested a new role for the nucleosome as a regulator of gene expression.

"We now know that nucleosomes mark territory," said co-author Dr. Brian Strahl, assistant professor of biochemistry and biophysics in UNC’s School of Medicine. "This chromosomal remodeling allows the work of gene expression to occur."

The study used the yeast genome as an experimental model to determine if chromosomal remodeling actually occurred. "The yeast genome is very simple compared to the human genome, but yeast are quite responsive to their environment," Lieb said.

By varying the food source given to the yeast, the authors demonstrated that the yeast genes required to process new nutrients lost their nucleosomes and were expressed.

They also showed that nucleosomes return to genes that need to be turned off when yeast are subjected to less than optimal growing conditions. This chromosomal remodeling discovered in yeast likely is directly translatable to the more complicated mammalian genome, the researchers said. "The entire machinery required to package DNA and express genes in yeast is very similar to that in humans," Lieb said. "Its application is likely the same in mammalian cells."

The study potentially paves the way for scientists to understand how chromosomal remodeling influences gene expression and regulation in human diseases such as cancer, Strahl said. "This is such a fundamental observation about the genome, but nobody had ever made it before," he added.

Support for the research came from the National Human Genome Research Institute and the National Institute of General Medical Sciences, components of the National Institutes of Health.

Co-authors with Lieb and Strahl are postdoctoral researchers Drs. Cheol-Koo Lee, department of biology; Yoichiro Shibata, biochemistry and biophysics; and Bhargavi Rao, Curriculum in Genetics and Microbiology.

| newswise
Further information:
http://www.unchealthcare.org

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>