Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New world record magnet for chemical and biomedical research

27.07.2004


The National High Magnetic Field Laboratory, funded by the National Science Foundation and the State of Florida, has achieved another world record in magnet development with the successful testing of its 21.1 Tesla, superconducting, ultra-wide bore, NMR magnet. The magnet reached full field on July 21, 2004, and will remain at field for years -- and even decades -- to come. A team of engineers headed by Denis Markiewicz, Tom Painter, Iain Dixon, and Jim Ferner at the NHMFL developed, designed, manufactured, and tested the magnet system. The product of this 13-year effort stands 16 feet tall, weighs over 30,000 pounds, and has a stored energy of 40 megajoules. No other magnet in the world can produce 21.1 Tesla for NMR and MRI science in a 105 mm warm bore.

NHMFL Director Greg Boebinger said, "This very powerful and ultra-wide bore magnet was an extremely challenging system to build, and it represents a significant engineering accomplishment. It is the crown jewel of the laboratory’s NMR spectroscopy and imaging program -- a joint effort between the National High Magnetic Field Laboratory in Tallahassee and in Gainesville." This accomplishment positions the NHMFL as an international leader in the development of high field superconducting magnet technology for magnetic resonance applications.

The magnet is a concentric assembly of ten superconducting coils connected in series and operated at 1.7 K (-456.6 Fahrenheit). Each coil is wound with a monolithic superconductor, composed of either niobium-tin (Nb3Sn) or niobium-titanium (NbTi) filaments in a copper matrix. To support the magnetic loading, the coils are configured with stainless steel overbanding and are vacuum impregnated with cryogenically tough epoxy for structural support. The high current density coils produce a uniform field of 21.1 Tesla to one part in one billion in a volume 64 times larger than that of typical NMR systems. Small adjustments to field homogeneity are achieved with a set of superconducting shim coils that fine tune the magnetic field. Fabrication of the NbTi and shim coils occurred in cooperation with an industrial partner, Intermagnetics General Corporation. The achievement of producing a uniform 21.1 Tesla field in a warm bore of 105 mm is attributed to the development of state-of-the-art magnet technology at the NHMFL and in collaboration with industry.



"We are extremely excited about the prospects of exploring new avenues in chemical and biomedical science with this one-of-a-kind magnet system that will have an operating frequency of 900 MHz for Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imaging (MRI)," stated NMR Director Tim Cross. The ultra-wide bore (105 mm) is the unique aspect of this magnet that will permit a much greater range of scientific experiments than would be possible in standard 52 mm bore magnets. Science performed on this unique national resource will range from materials research to macromolecular biological structure determination and non-invasive magnetic resonance imaging of laboratory animals. With this instrument, scientists from around the world as well as those at the NHMFL will be able to expand the horizons of scientific investigation with NMR and MRI technologies.

Tom Painter | EurekAlert!
Further information:
http://www.magnet.fsu.edu

More articles from Life Sciences:

nachricht Molecular motors run in unison in a metal-organic framework
20.03.2019 | University of Groningen

nachricht Active substance from plant slows down aggressive eye cancer
20.03.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>