Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New world record magnet for chemical and biomedical research

27.07.2004


The National High Magnetic Field Laboratory, funded by the National Science Foundation and the State of Florida, has achieved another world record in magnet development with the successful testing of its 21.1 Tesla, superconducting, ultra-wide bore, NMR magnet. The magnet reached full field on July 21, 2004, and will remain at field for years -- and even decades -- to come. A team of engineers headed by Denis Markiewicz, Tom Painter, Iain Dixon, and Jim Ferner at the NHMFL developed, designed, manufactured, and tested the magnet system. The product of this 13-year effort stands 16 feet tall, weighs over 30,000 pounds, and has a stored energy of 40 megajoules. No other magnet in the world can produce 21.1 Tesla for NMR and MRI science in a 105 mm warm bore.

NHMFL Director Greg Boebinger said, "This very powerful and ultra-wide bore magnet was an extremely challenging system to build, and it represents a significant engineering accomplishment. It is the crown jewel of the laboratory’s NMR spectroscopy and imaging program -- a joint effort between the National High Magnetic Field Laboratory in Tallahassee and in Gainesville." This accomplishment positions the NHMFL as an international leader in the development of high field superconducting magnet technology for magnetic resonance applications.

The magnet is a concentric assembly of ten superconducting coils connected in series and operated at 1.7 K (-456.6 Fahrenheit). Each coil is wound with a monolithic superconductor, composed of either niobium-tin (Nb3Sn) or niobium-titanium (NbTi) filaments in a copper matrix. To support the magnetic loading, the coils are configured with stainless steel overbanding and are vacuum impregnated with cryogenically tough epoxy for structural support. The high current density coils produce a uniform field of 21.1 Tesla to one part in one billion in a volume 64 times larger than that of typical NMR systems. Small adjustments to field homogeneity are achieved with a set of superconducting shim coils that fine tune the magnetic field. Fabrication of the NbTi and shim coils occurred in cooperation with an industrial partner, Intermagnetics General Corporation. The achievement of producing a uniform 21.1 Tesla field in a warm bore of 105 mm is attributed to the development of state-of-the-art magnet technology at the NHMFL and in collaboration with industry.



"We are extremely excited about the prospects of exploring new avenues in chemical and biomedical science with this one-of-a-kind magnet system that will have an operating frequency of 900 MHz for Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imaging (MRI)," stated NMR Director Tim Cross. The ultra-wide bore (105 mm) is the unique aspect of this magnet that will permit a much greater range of scientific experiments than would be possible in standard 52 mm bore magnets. Science performed on this unique national resource will range from materials research to macromolecular biological structure determination and non-invasive magnetic resonance imaging of laboratory animals. With this instrument, scientists from around the world as well as those at the NHMFL will be able to expand the horizons of scientific investigation with NMR and MRI technologies.

Tom Painter | EurekAlert!
Further information:
http://www.magnet.fsu.edu

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>