Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Briggs takes to the molecular level Darwin’s findings on plants sensing the direction of light

26.07.2004


US National Academy of Sciences member and Stanford Professor Winslow R. Briggs will speak at the American Society of Plant Biologists (ASPB) annual meeting July 24, 2004 in Orlando, Florida about findings in his studies of how plants sense the direction of light.



Most casual observers have likely noticed that seedlings on a windowsill will grow toward the light. This phenomenon, known as phototropism, is a manifestation of a sensitive system plants have for detecting light. This light sensing system guides seedlings through the soil and has profound influences on their development during the critical stage of seedling establishment and later as the leaves adapt to changes in the light environment.

Briggs’s research group has discovered the two-member family of protein molecules that serves as the detector and decoder of the blue photons on which the seedling cues to determine the direction of light. The molecule, known as phototropin, is now being intensively studied because of its unique properties by chemists and biophysicists as well as plant biologists.


Professor Briggs began experimenting on how plants detect the direction and intensity of light in the 1950’s, but he certainly was not the first to be drawn to this fascinating example of sensory biology. For example, Charles Darwin and his son were drawn to the phenomenon and performed some classic experiments that paved the way for further studies, including Briggs’ successful approaches. The Darwins could not have imagined that the topic would in the 21st century be studied at the molecular level as it is now.

Professor Briggs will present his group’s latest findings on the topic at the ASPB Annual meeting during the Major Symposium on Tropisms 4 p.m. to 6:30 p.m. Saturday, July 24, 2004 in Coronado Ballrooms L-T at Disney’s Coronado Springs Resort & Convention Center.

Brian Hyps | EurekAlert!
Further information:
http://www.aspb.org

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>