Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Stem Cell in Blood and Vessel Formation Identified

26.07.2004


A research study published this week has for the first time identified the specific precursor stem cell that gives rise not only to the important cells lining our blood vessels but also the blood itself.



Dr. Mick Bhatia and his colleagues at Robarts Research Institute in London, Ontario, had demonstrated last year that human embryonic stem cells (hESCs) can make blood cells; and they and others have known for some time that there is a connection between the development of the blood and the formation of the vessels it flows through. Now, Dr. Bhatia has traced the development of these interrelated systems back to a specific population of primitive endothelial-like cells in the lining of the earliest blood vessels. His findings are published in this week’s edition of the journal Immunity.

Understanding this common lineage of blood and cells comprising veins and arteries provides a powerful tool to test ideas about how these human precursor cells could potentially be transplanted to repair damaged tissue or organs, such as in cases of trauma or injury where vessels have been torn and major blood loss has occurred, or in cancer to “turn off” the formation of blood vessels that feed a growing tumour.


“We think we’ve identified a version of human blood precursors that may be the most potent of blood cells -- the one that has the greatest developmental potential to promote repair of vessels as well as regeneration of the blood itself,” explained Dr. Bhatia, Director of the Krembil Centre for Stem Cell Biology at Robarts. “This precursor cell provides an important new tool in our biological toolkit that can help us understand precisely how stem cells give rise to the tissues and organs of the body -- and how we can harness that potential to minimize the damage of injury and disease.”

Still, Dr. Bhatia, who is also an associate professor of microbiology and immunology at The University of Western Ontario, stresses that much fundamental biology remains in stem cell research.

Before new therapies can be developed, tested and safely used in humans, researchers continue to refine methods in identifying, purifying and verifying rare and elusive stem cells for study. They are also identifying what genes are important in the development and differentiation of these cells, what genes are linked to blood cancers, such as leukemias, and which particular growth factors can have a stimulating -- or inhibiting -- effect on stem cell development.

| newswise
Further information:
http://www.robarts.ca

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>