Biologists at the University of California, San Diego have discovered a new mechanism that allows cells to fight a class of toxins made by a wide variety of disease-causing bacteria.
Photo of normal roundworms (top) and ill roundworms (bottom) without gene that permits resistance to pore-forming toxin. Credit: Danielle Huffman, UCSD
Their discovery, detailed in this week’s early online edition of the Proceedings of the National Academy of Sciences, could eventually pave the way for the development of new, more effective treatments for bacterial diseases that kill or sicken millions of people each year, such as pneumonia, strep throat, scarlet fever, rheumatic fever and toxic shock syndrome.
The essential achievement in the UCSD discovery is the team’s finding that animal cells, from roundworms to mammals, have a natural defense mechanism to ward off certain kinds of bacteria that secrete toxins in order to form tiny holes in the membranes of the cells they infect. Scientists estimate that such “pore-forming” bacterial toxins account for approximately one-quarter of the known protein “virulence factors” that increase the infection and severity of a bacterial-caused disease.
Kim McDonald | newswise
Further information:
http://www.ucsd.edu
Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine
Machine learning, imaging technique may boost colon cancer diagnosis
06.12.2019 | Washington University in St. Louis
University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making
In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...
With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction
The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...
Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.
Fibroblasts kit - ready to heal wounds
Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.
In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...
Anzeige
Anzeige
03.12.2019 | Event News
First International Conference on Agrophotovoltaics in August 2020
15.11.2019 | Event News
Laser Symposium on Electromobility in Aachen: trends for the mobility revolution
15.11.2019 | Event News
Lung images of twins with asthma add to understanding of the disease
06.12.2019 | Health and Medicine
A robot and software make it easier to create advanced materials
06.12.2019 | Materials Sciences
Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Life Sciences