Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic mutation found that is major contributor to type 1 diabetes

12.07.2004


A natural mutation of a gene that helps regulate the reactivity of the immune system is a major contributor to type 1 diabetes, Medical College of Georgia researchers have found.



The newly discovered gene, SUMO-4, controls the activity of NFêB, a molecule that in turn controls the activity of cytokines, proteins that regulate the intensity and duration of the immune response, according to research that will be published in the August print issue of Nature Genetics and online July 11.

By examining the transmission of genes from parents to children in nearly 1,000 diabetic families from around the world, the researchers found that a certain natural mutation of that SUMO-4 gene increases the risk of type 1 diabetes.


"This helps us understand how type 1 diabetes works, and we can use this improved understanding to better predict who will get the disease and design new intervention strategies for those who do," said Dr. Jin-Xiong She, director of the MCG Center for Biotechnology and Genomic Medicine and a co-senior author on the study.

"The mutation we have found is going to increase the responsive capacity of the immune system to environmental triggers or stimulators; it makes it more reactive," said Dr. Cong-Yi Wang, molecular geneticist and co-senior author.

Dr. Wang and his research team found that when that mutation encounters an environmental trigger, such as a bacterial or viral infection, it throws off the usual well-balanced activity of the immune system, initiating an autoimmune response that eventually attacks the patient’s own tissue.

They already are exploring the gene’s potential role in other autoimmune diseases as well such as lupus, thyroid disease, arthritis and multiple sclerosis.

SUMO-4 is the fourth gene identified that contributes to type 1 diabetes, taking a place just behind HLA, another regulator of immunity, in terms of relative risk. "Many genes are involved in type 1 diabetes, but this is one of the most important ones," said Dr. She. He leads a research team that has followed diabetic families primarily in Florida and Georgia for the past 10 years to find precisely how genes, the immune system and the environment work together to cause type 1 diabetes, a childhood disease that requires a lifetime of taking insulin. Like its lifestyle-related counterpart, type 2 diabetes, the incidence of type 1 has increased dramatically: a near 300 percent increase in the last 20 years.

This is one of the few times scientists have successfully used a systematic approach to finding a gene involved in a complex disease such as diabetes. The MCG researchers narrowed their search for diabetes-related genes by looking at those most often transmitted to children with diabetes, Dr. She said. That approach compares with traditional forward genetics — a cumbersome process they liken to looking for a needle in a haystack — which narrows the search by predicting which of some 40,000 genes might be involved in a disease based on what scientists already know about the disease and the genes.

"You guess the function, you guess the disease possibilities, then you guess which genes might be involved in the pathogenesis," Dr. She said. "As a community, we have guessed right a few times, including identification of HLA. But this is the first time we have used a systematic approach to find the gene and it’s the first gene in which we know how it contributes to the disease."

For example, HLA is a regulator of immunity that has been known for 30 years, but researchers still don’t know exactly how it causes diabetes. The MCG team has found that SUMO-4 encodes a protein that modifies the activity of NFêB. It was already known that NFêB regulates the production of certain cytokines and that cytokines have a role in type 1 diabetes as well as other autoimmune diseases. What wasn’t known was the cause of the excessive cytokine production seen in those diseases. Now they know that SUMO-4 regulates the activity of NFêB, which in turn regulates whether cytokine production is on autopilot, shut down or revved up.

The SUMO-4 mutation they found overrides the systems that put cytokine production on autopilot or shut it down. Instead, it enables cytokine production not only to increase but directs the increased immune response at the insulin-producing beta cells of the pancreas.

Dr. She credits many for the findings but especially Dr. Wang for his diligence in working through this more systematic — but still extremely tedious — approach to identifying not only the gene but how it causes disease.

"This is the reason scientists stay in science," Dr. She said. "These are the days you look for, days when you can make a difference, not just for science, but for humanity, for patients, for people who have diabetes and, perhaps even more, for people who are going to develop diabetes." He noted that none of the work would be possible without the contributions of study families. "We are trying to improve their lives, but without them, we cannot do anything."

The studies were funded by National Institute of Child Health and Development and the Juvenile Diabetes Research Foundation. Collaborators included researchers at the University of Florida; Endocrinologia, Instituto Clinica Medica II, University of Rome; the University of Southern California School of Medicine, Los Angeles; Cedars-Sinai Medical Center and the University of California, Los Angeles; Hanyang University Hospital in Korea; Facultad de Medicina, Universidad Complutense in Madrid; HLA Laboratory, Beijing Red Cross Blood Center, China; and Unite de Recherches de 1’INSERM U580, Centre de l’Association Claude Bernard, France.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia
23.04.2019 | Cincinnati Children's Hospital Medical Center

nachricht Bacteria use their enemy -- phage -- for 'self-recognition'
23.04.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>