Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Does Cloning Create Abnormalities? Scientists Take A Step Towards Finding Out

30.06.2004


Significant abnormalities observed in cloned mice help reinforce the need to continue to avoid the reproductive cloning of humans, a scientist said on Wednesday 30 June 2004 at the 20th annual conference of the European Society of Human Reproduction and Embryology. Dr. Takumi Takeuchi, from Cornell University, New York, USA told a media briefing that he and Dr. Gianpiero Palermo’s team had compared imprinting abnormalities (the process where specific genes inherited from both parents are silent) in mice embryos derived from assisted reproduction techniques and from cloning.



“We found significantly impaired development in the cloned embryos compared with those derived from more conventional ART techniques”, said Dr. Takeuchi, “and this has made us more convinced that reproductive cloning is unsafe and should not be applied to humans.”

Drs. Takeuchi and Palermo were prompted to undertake the research by concerns about the increased incidence of imprinting abnormalities in children born after ARTs. The most prominent of these is Beckwith-Wiedemann syndrome, where children are born larger than normal.


Scientists also knew that cloned animals had been born with a similar condition, called ‘large offspring syndrome’. Dr.Takeuchi’s team set out to study whether the disorders arising in the ART system and those in cloned animals were comparable. The team took mouse oocytes and divided them into three groups. 68 were inseminated by ICSI, 37 activated parthenogenetically (without involving male gametes), and 77 were cloned by injected a cell nucleus into an egg where the nucleus had been removed. Of this latter group, 43 underwent first embryonic cleavage (the first few divisions of an embryonic egg) and 15 became full blastocysts.

“The embryos created by parthenogenesis and those from ICSI reached the blastocyst stage at the same rate, unlike the clones, where only 30% got that far”, said Dr. Takeuchi. “This appears to be due to the abnormal gene expression we saw in the cloned group. This not only explains the developmental impairment of the cloned group, but may in future be helpful in identifying environmental culture condition that are deleterious to the development of ART embryos,” he said.

Dr. Takeuchi said that as yet it was difficult to make a direct link with a specific cause for the abnormalities. “But there are a number of possibilities”, he said. “They could be linked to fertility medications utilized to induce superovulation, or the progesterone employed to help implantation; in vitro culture conditions which could be related to the length of the culture or the concentrations of certain media components such as serum or even a specific amino acid. Finally, we cannot exclude the contribution of the peculiar genetic makeup of patients’ gametes, together with the specific ART procedure”, he said.

Identification of gene expression abnormalities would help to monitor the development of reproductive techniques prior to their application to routine medical practice, said Dr. Takeuchi.

Emma Mason | alfa
Further information:
http://www.eshre.com

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>