Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare, tiny find in West Australian waters

24.06.2004


A miniscule marine creature caught during a recent Indian Ocean research voyage is believed to be the first of its kind identified in the Southern Hemisphere

A miniscule marine creature caught during a recent Indian Ocean research voyage is believed to be the first of its kind identified in the Southern Hemisphere.The single celled organism, supporting what looks like 6 legs is a phaeodaria from the family coelodendridae, also known as a radiolarian. Measuring only 1.4 mm, the organism was found during an investigation of ocean eddies by the National Marine Facility, Southern Surveyor.

"It was a case of being in the right place at the right time with the right people," says PhD student Harriet Paterson, who discovered the radiolarian. Harriet works with the Strategic Research Fund for the Marine Environment (SRFME) a joint CSIRO-West Australian Government marine research team based at Floreat, Perth. "Our objective was to collect samples of marine life in ocean eddies and this was a complete surprise to us, and I’m sure to other researchers in this field from Northern Hemisphere institutions," Ms Paterson said. Ms Paterson detailed her research to colleagues during a science symposium in Perth yesterday (June 16).



The Director of SRFME, Dr John Keesing, said the discovery is an example of how state and federal agencies are coming together to tackle the problem of exploring and managing Australia’s vast and valuable ocean resources.

"Australia’s territory is 70 per cent ocean. We need more ocean scientists. We need to be able to provide hard scientific facts about our oceans that will allow legislators, regulators and industry to be able to address the challenge of managing our ocean resources.

"The West Australian Government, CSIRO Marine Research and the CSIRO Wealth from Oceans Flagship have come together to provide a program to train and supervise new PhD students in the area of marine science. This discovery is a direct result of that program," said Dr Keesing.

The find has excited scientists researching the micro zooplankton world. The pheodaria was captured in a sediment trap deployed within an ’upwelling’ eddy bringing cold and nutrient-rich deep ocean water to the surface by Dr Stephan Pesant a member of the University of Western Australia team lead by Dr Anya Waite, Centre for Water Research.

The micro zooplankton species is understood to live from depths of 100 to 5000 metres. Its food range extends from ocean algae to tiny shellfish. It consumes prey in the same manner as a spider, remineralising part of the ’ocean snow’ and helping to sustain other small forms of marine life.

Ms Paterson has searched the scientific literature and believe this is the first sample to be found in the Southern Hemisphere. The first sample was recorded during the world’s first oceanographic voyage by the British ship Challenger in the 1870’s, and then more than a century later, US scientist Dr Neil Swanberg collected 18 specimens down to a depth of 500 metres in one voyage from a submersible in 1986.

Craig Macaulay | EurekAlert!
Further information:
http://www.csiro.au

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>