Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universal Mechanism Controlling Biodiversity

24.06.2004


Nature publishes the first comprehensive overview of the biodiversity patterns of phytoplankton, the tiny plants that float on the surface of the sea, on 24 June.

An international research team, partly funded by the Natural Environment Research Council, found striking similarities between biodiversity patterns on land and in the oceans prompting the conclusion that there is a universal mechanism controlling biodiversity. The oceans, by far the largest ecosystem on the planet, are the least understood.

The worldwide study of phytoplankton found that biodiversity appears to be dependent on the biomass in a particular habitat. Biomass, the total mass of all living organisms in a habitat, is a good indicator of the energy held in a system and hence it’s productivity. This finding is important because it is consistent with biodiversity on land.



The researchers discovered that phytoplankton biodiversity is greatest at medium levels of biomass. That is, if there is a huge phytoplankton bloom in a particular area it will probably be dominated by a single species, (or by a very small number of species). If there is little growth in a low-productive area, that too will be dominated by a single species or a limited number of species.

Phytoplankton species reach their maximum number at an intermediate biomass. These findings could be due to the fact that in waters of low biomass, or productivity, there are not enough nutrients for the survival of many species. On the other hand, in highly productive waters, with massive plankton blooms, there is not much light available but numerous predators, and only the strongest competitors survive.

Researchers did discover some discrepancies between biodiversity on land and ocean. They found only a very weak link between phytoplankton biodiversity and the biodiversity of their main consumers, zooplankton, the tiny animals that feed on phytoplankton. This is contrary to biodiversity on land. They suggest size is the key factor here, not the marine environment.

The amazing biodiversity of plants in tropical rainforests is accompanied by a similarly astonishing biodiversity of animals feeding on them. The size and complexity of trees in a forest provide many niches for smaller organisms to exploit encouraging diversity on land. Phytoplankton have no such complexity and contribute little structure to their environment. The team suggest that the size of primary producers, such as phytoplankton, may be an important factor in the way ecological communities are organised.

The researchers arguments for a universal mechanism controlling biodiversity are strengthened by the finding that biodiversity patterns in phytoplankton are remarkably similar throughout the world’s ocean despite obvious differences in environmental conditions - temperature, light, nutrients, currents and mixing.

The most important universal processes determining plankton biodiversity are nutrient availability, shading, and grazing by zooplankton species.

Phytoplankton are at the bottom of the marine food web, and hence have a major impact on marine resources including fish populations. Knowledge on the biodiversity of phytoplankton is important since some plankton species are highly edible whereas others are not, just like green grass and thistles on land.

Phytoplankton could also play a major role in climate change as they absorb huge quantities of carbon dioxide. During recent years various experiments have been carried out to fertilize the oceans with iron in order to stimulate phytoplankton productivity and carbon dioxide uptake. These experiments induced major shifts in plankton species.

This research is a major milestone in the understanding and prediction of plankton species composition and their role in global processes.

Owen Gaffney | NERC
Further information:
http://www.nerc.ac.uk
http://www.amt-uk.org

More articles from Life Sciences:

nachricht Could dark carbon be hiding the true scale of ocean 'dead zones'?
10.12.2019 | University of Plymouth

nachricht Discovery of genes involved in the biosynthesis of antidepressant
09.12.2019 | Leibniz Institute of Plant Genetics and Crop Plant Research

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Could we cool the Earth with an ice-free Arctic?

10.12.2019 | Earth Sciences

Urban growth causes more biodiversity loss outside of cities

10.12.2019 | Ecology, The Environment and Conservation

Wie ganze Ökosysteme langfristig auf die Erderwärmung reagieren

10.12.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>