Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universal Mechanism Controlling Biodiversity

24.06.2004


Nature publishes the first comprehensive overview of the biodiversity patterns of phytoplankton, the tiny plants that float on the surface of the sea, on 24 June.

An international research team, partly funded by the Natural Environment Research Council, found striking similarities between biodiversity patterns on land and in the oceans prompting the conclusion that there is a universal mechanism controlling biodiversity. The oceans, by far the largest ecosystem on the planet, are the least understood.

The worldwide study of phytoplankton found that biodiversity appears to be dependent on the biomass in a particular habitat. Biomass, the total mass of all living organisms in a habitat, is a good indicator of the energy held in a system and hence it’s productivity. This finding is important because it is consistent with biodiversity on land.



The researchers discovered that phytoplankton biodiversity is greatest at medium levels of biomass. That is, if there is a huge phytoplankton bloom in a particular area it will probably be dominated by a single species, (or by a very small number of species). If there is little growth in a low-productive area, that too will be dominated by a single species or a limited number of species.

Phytoplankton species reach their maximum number at an intermediate biomass. These findings could be due to the fact that in waters of low biomass, or productivity, there are not enough nutrients for the survival of many species. On the other hand, in highly productive waters, with massive plankton blooms, there is not much light available but numerous predators, and only the strongest competitors survive.

Researchers did discover some discrepancies between biodiversity on land and ocean. They found only a very weak link between phytoplankton biodiversity and the biodiversity of their main consumers, zooplankton, the tiny animals that feed on phytoplankton. This is contrary to biodiversity on land. They suggest size is the key factor here, not the marine environment.

The amazing biodiversity of plants in tropical rainforests is accompanied by a similarly astonishing biodiversity of animals feeding on them. The size and complexity of trees in a forest provide many niches for smaller organisms to exploit encouraging diversity on land. Phytoplankton have no such complexity and contribute little structure to their environment. The team suggest that the size of primary producers, such as phytoplankton, may be an important factor in the way ecological communities are organised.

The researchers arguments for a universal mechanism controlling biodiversity are strengthened by the finding that biodiversity patterns in phytoplankton are remarkably similar throughout the world’s ocean despite obvious differences in environmental conditions - temperature, light, nutrients, currents and mixing.

The most important universal processes determining plankton biodiversity are nutrient availability, shading, and grazing by zooplankton species.

Phytoplankton are at the bottom of the marine food web, and hence have a major impact on marine resources including fish populations. Knowledge on the biodiversity of phytoplankton is important since some plankton species are highly edible whereas others are not, just like green grass and thistles on land.

Phytoplankton could also play a major role in climate change as they absorb huge quantities of carbon dioxide. During recent years various experiments have been carried out to fertilize the oceans with iron in order to stimulate phytoplankton productivity and carbon dioxide uptake. These experiments induced major shifts in plankton species.

This research is a major milestone in the understanding and prediction of plankton species composition and their role in global processes.

Owen Gaffney | NERC
Further information:
http://www.nerc.ac.uk
http://www.amt-uk.org

More articles from Life Sciences:

nachricht Regulation of root growth from afar: How genes from leaf cells affect root growth.
22.07.2019 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

USF geoscientists discover mechanisms controlling Greenland ice sheet collapse

22.07.2019 | Earth Sciences

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>