Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way of looking at the human genome

17.06.2004


Under the EU Sixth Framework Programme (FP6) for Research and Development (2002-2006) 2.2 million Euros have been awarded to the 3DGENOME-research program. FP6 is one of the world’s largest research programmes, with a budget of 17.5 billion Euros, of which around 3 billion Euros is available for life sciences research. The main objective of the 3DGENOME program is to understand how the human genome, consisting of a number of very long DNA molecules that carry our genetic information, are coiled up inside our cells. By changing the way that DNA is folded, cells control the switching on and off genes, which are the units of genetic information. Results will help to understand errors in our genetic system that for instance result in tumour formation. The research program is conducted by a consortium of seven European partners and is coordinated by the Swammerdam Institute for Life Sciences of the University of Amsterdam in The Netherlands.



The human cell orchestrates the activity of its about 35,000 genes in an extremely efficient and reliably way. These genes are bits of information on DNA. Each of our cells contains DNA molecules with a total length of 2 meters, folded inside a cell nucleus of only 1/100th of a millimetre diameter. This is comparable to packing 20 km of thin wire inside just a tennis ball. Evidently, the DNA thread is extremely folded inside a cell. This folding plays an important role in how a cell switches genes on and off, thereby deciding how the cell behaves. Folding decides whether a cell becomes a skin cell, a liver cell or a neuron, and whether a cell is healthy or sick.

The 3dgenome program should lead to a breakthrough in our understanding of how our genome functions. Using advanced microscopic techniques in combination with novel data analysis software, the consortium of European scientists intend to establish a three-dimensional map of the DNA fibre inside the human cell. This spatial structure will be related to patterns of switched off and stitched on genes along the DNA molecule.


Since it is very likely that the three-dimensional organisation of genomes is the same for all animals, the 3DGENOME program, in addition to human cells, incorporates studies on cells from the mouse and from fruit flies, two well-studied organisms. Each of these organisms has specific technical advantages, such as (i) detailed information about how genes are arranged on the DNA and which genes are switched on and off, (ii) technology to visualise DNA inside the cell using state-of-the-art microscopy, and (iii) methods to analyse microscopy images and to obtain information about the three-dimensional folding of DNA.

Frans Stravers | alfa

More articles from Life Sciences:

nachricht Brain cells protect muscles from wasting away
24.02.2020 | University of California - Berkeley

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

A genetic map for maize

24.02.2020 | Agricultural and Forestry Science

Where is the greatest risk to our mineral resource supplies?

24.02.2020 | Earth Sciences

Computer vision is used for boosting pest control efficacy via sterile insect technique

24.02.2020 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>