Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT technology jump-starts human embryonic stem cell work

14.06.2004


An MIT team has developed new technology that could jump-start scientists’ ability to create specific cell types from human embryonic stem cells, a feat with implications for developing replacement organs and a variety of other tissue engineering applications.



The scientists have already identified a simple method for producing substantially pure populations of epithelial-like cells from human embryonic stem cells. Epithelial cells could be useful in making synthetic skin.

Human embryonic stem cells (hES) have the potential to differentiate into a variety of specialized cells, but coaxing them to do so is difficult. Several factors are known to influence their behavior. One of them is the material the cells grow upon outside the body, which is the focus of the current work.


"Until now there has been no quick, easy way to assess how a given material will affect cell behavior," said Robert Langer, the Germeshausen Professor of Chemical and Biomedical Engineering. Langer is the senior author of a paper on the work that will appear in the June 13 online issue of Nature Biotechnology.

The new technique is not only fast; it also allows scientists to test hundreds to thousands of different materials at the same time. The trick? "We miniaturize the process," said Daniel G. Anderson, first author of the paper and a research associate in the Department of Chemical Engineering. Anderson and Langer are coauthors with Shulamit Levenberg, also a chemical engineering research associate.

The team developed robotic technology to deposit more than 1,700 spots of biomaterial (roughly 500 different materials in triplicate) on a glass slide measuring only 25 millimeters wide by 75 long. Twenty such slides, or microarrays, can be made in a single day. Exposure to ultraviolet light polymerizes the biomaterials, making each spot rigid and thus making the microarray ready for "seeding" with hES or other cells. (In the current work, the team seeded some arrays with hES and some with embryonic muscle cells.)

Each seeded microarray can then be placed in a different solution, including such things as growth factors, to incubate. "We can simultaneously process several microarrays under a variety of conditions," Anderson said.

Another plus: the microarrays work with a minimal number of cells, growth factors and other media. "That’s especially important for human embryonic stem cells because the cells are hard to grow, and the media necessary for their growth are expensive," Anderson said. Many of the media related to testing the cells, such as antibodies, are also expensive.

In the current work, the scientists used an initial screening to find especially promising biomaterials for the differentiation of hES into epithelial cells. Additional experiments identified "a host of unexpected materials effects that offer new levels of control over hES cell behavior," the team writes, demonstrating the power of quick, easy screenings.


This work was funded by the National Science Foundation and the National Institutes of Health.

Elizabeth Thomson | EurekAlert!
Further information:
http://web.mit.edu/newsoffice/www/

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>