Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Need Sex? It’s Probably Something About Stress

09.06.2004


Heat turns colonial algae into hotties.


Volvox carteri, a colonial freshwater alga. The small dots are regular cells and the large ones are asexual reproductive cells. Photograph courtesy of Aurora Nedelcu


Hot, stressed volvox flouresces when the dye reacts with oxidants. Photograph courtesy of Aurora Nedelcu and Oana Marcu



When algae find themselves in hot water, the normally asexual organisms get all stressed out and turn sexual.

Blame it on the free radicals, says a team of researchers.


Colonies of the multicellular green alga Volvox carteri exposed to temperatures of 111 degrees Fahrenheit (42.5 degrees Celsius) had twice the amount of free radicals, oxidants that can damage biological structures, as unheated colonies. High levels of oxidants within their cells activated the algae’s sex-inducer gene, the researchers report.

Then the fun starts.

The sex-inducer gene promotes the production of the sex-inducer, a pheromone the colony releases to guarantee willing mating partners.

"We’re the first to show that oxidants are responsible for sex in this organism," said UA professor Richard E. Michod, head of UA’s department of ecology and evolutionary biology and a coauthor on the research. "This is the first demonstration that stress turns on sex-inducer genes."

The research will be published in the June 9 issue of the Proceedings of the Royal Society of London, B. Aurora M. Nedelcu, an adjunct assistant professor at UA and an assistant professor at the University of New Brunswick in Canada, is the lead author of the paper, " Sex as a response to oxidative stress: A two-fold increase in cellular reactive oxygen species activates sex genes." Oana Marcu of the University of California, Irvine, is a coauthor.

It may seem an odd question, but biologists have long puzzled over why have sex.

Besides all the concomitant fuss and muss, sex seems like an inefficient way to pass one’s genes to the next generation.

But sex has been around a long time and lots of organisms do it, so there must be a good reason, scientists figured.

One explanation for sex is that valuable genetic variation is created by the mixing of genes that occurs, first when sperm and eggs are formed and again when they merge.

But about 15 years ago, Michod and some of his UA colleagues proposed an alternative explanation called the DNA-repair hypothesis.

They suggest that the process which divvies out parental genetic material to sperm and eggs also repairs the DNA that goes into those cells. The repair mechanism keeps the hard knocks that life dealt the parents’ DNA from being passed on to the children.

"Sex is all about maintaining the health of the DNA you give your kids," Michod said.

Although there has been work supporting the DNA-repair hypothesis as the reason for sex in single-celled organisms, Michod said the current work is the first evidence that DNA repair is a reason for multicellular organisms to have sex.

"I’d always believed it, but we never had concrete evidence in multicellular organisms until now," he said. "I’m thrilled."

For many organisms, sex is not the main method of reproduction. Instead, sex is a response to stress.

And stress generally increases the production of free radicals, sometimes called oxidants.

While pondering those two facts, Nedelcu, then a research associate in Michod’s lab, wondered whether the signal for sex in such organisms is an increase in oxidants.

To test her idea, she used Volvox, the lab rat of the algal world.

Tiny spheres of gel with individual alga cells spread over the surface of the sphere like polka dots, Volvox colonies can be found in temporary ponds that fill with water in the spring and slowly dry out as summer progresses.

In addition to the outer cells, a colony also has specialized reproductive cells tucked inside the center of the 0.5 millimeter-diameter sphere. Some colonies are male, some are female. The colonies reproduce asexually, by fission of the reproductive cells, about every two days when conditions are good.

As the summer progresses and ponds start heating up and drying out, the colonies become sexual. The sexual colonies have specialized sperm and egg cells that merge to form tough spores that persist until the dried-out pond fills again the following spring. When the spores germinate, the genetic machinery goes through a process called meiosis, which repairs and mixes up the DNA from the parents’ sperm and eggs. The new colonies are asexual.

To simulate such late-summer conditions, Nedelcu put culture plates full of Volvox into water baths for two hours. At several points in time, she added a dye that fluoresces when exposed to oxidants. She then measured the fluorescence, which corresponded to the amount of oxidants the Volvox produced.

After only 10 minutes at 111 F (42.5 C), Volvox colonies had twice as many oxidants when compared with unheated colonies.

"This paper shows that sex is a response to oxidants," she said. "Sex evolved as a way to deal with stress and its consequences -- DNA-damaging oxidants."

Mari N. Jensen | University of Arizona
Further information:
http://uanews.org/cgi-bin/WebObjects/UANews.woa/wa/SRStoryDetails?ArticleID=9155

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>