Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earstones Tell Fishes’ Tale of Early Life in the Colorado River Estuary

09.06.2004


Cross-section of the earstone, or otolith, from a totoaba shows the annual rings that researchers use to learn about the fish’s history.


Adult totoaba otolith collected from an Indian midden. Specimen courtesy of Scripps Institute of Oceanography, La Jolla, Calif.


During their tender youth, both the endangered fish species totoaba and the commercially important gulf corvina require the brackish water habitat provided by the shrinking Colorado River estuary, report researchers.

Although overfishing has been implicated in the decline of both species, commercial harvesting isn’t the only reason for the two species’ decline, the finding suggests. Since 1960, diversion of Colorado River water for human uses has greatly reduced the amount of fresh water that reaches the Gulf of California, thereby reducing the brackish-water estuary, the region where river water and ocean water mix.

"It’s the first time that we’ve been able to substantiate that these fish are using Colorado River water," said Kirsten Rowell, the aquatic biologist who led the research team. "We provide evidence that both of these fish need brackish water in their youth, but today the northernmost part of the Gulf of California is more saline than the open ocean."



Rowell, a doctoral candidate in the department of geosciences at the University of Arizona in Tucson, used fish earstones, or otoliths, to decipher where the fish lived during their babyhood.

The chemistry of the almond-sized otoliths documents what type of water the fish lived in during various times in their lives. Otoliths act like the fish version of a flight recorder.

"You are what you swim in," she said, adding "Otoliths are great data loggers."

The team’s research shows that when they’re young’uns, the fish prefer the brackish water provided by the mixing of fresh and ocean water in the estuary at the mouth of the Colorado.

Team member Karl W. Flessa said, "There are two sources of human impact on these species: one is the direct effect of overfishing; the other is the indirect effect of freshwater diversion." Flessa, a professor in UA’s department of geosciences, said, "We don’t doubt that overfishing is or has been a threat to these species. We’re saying that changes to the nursery area are also a threat to these species."

Rowell will present the team’s research at the Gulf of California conference held June 13-16 at the Westward Look Resort in Tucson, Ariz. Her presentation, "Isotopic Logs from the Sea of Cortez: Environmental and Life History Records From Totoaba and Gulf Corvina Otoliths " will be given at 4 p.m. on Monday, June 14, in Colorado River Delta Session. Her coauthors are Flessa and David Dettman, a research scientist in UA’s department of geosciences.

The research was funded in part by the National Science Foundation, the Southern Arizona Environmental Management Society, the Chevron Research Fund and T&E, Inc.

Totoaba macdonaldi was the first commercially important fish in the northern Gulf of California. The fish can live 20-something years and grow to six feet in length. "San Felipe used to be just an ephemeral fishing village for totoaba," Rowell said. "They used to ship them overland to San Francisco and San Diego. It was the first time they tried to use refrigerated cars."

The commercial totoaba fishery crashed in 1975. Overfishing has been blamed for totoaba’s decline. The fish was listed by the United States as federally endangered in 1979. The current size of the totoaba population is unknown.

Gulf corvina, Cynoscion othonopterus, are still fished commercially, although the American Fisheries Society, the professional society of fisheries biologists, has recently identified the species as "vulnerable," because of habitat changes in the fish’s nursery area and heavy fishing pressure in fish’s spawning site.

Estuaries, zones where fresh river water and salty ocean water mix to form brackish water, are known to be nursery areas for many species of marine life, including many fishes.

Both totoaba and gulf corvina spawn in the mouth of the Colorado, according to fishermen’s reports. Rowell wondered whether otoliths from totoaba and gulf corvina could be used to document the fishes’ use of the Colorado River estuary as nursery.

Getting gulf corvina otoliths was fairly easy -- Rowell took them from four fish bought at the market in El Golfo de Santa Clara, Mexico, the little fishing village at the mouth of the Colorado.

Obtaining totoaba otoliths was trickier. Scripps Institute of Oceanography in La Jolla, Calif., loaned Rowell four 1,000-year-old totoaba otoliths that had been collected from an Indian archaeological site near San Felipe, Baja, Mexico.

Otoliths grow in layers, one layer per year of life. Rowell used a dental drill to grind off bits of otolith one layer at a time.

She then analyzed each layer for different forms of oxygen, called isotopes, to see where the fish lived each year of its life. Fresh water has relatively more of the lighter form of oxygen, oxygen-16, so layers with more oxygen-16 represented years that the fish had spent in brackish water. If the layer had more of the other form, oxygen-18, that meant the fish spent that year in the saline ocean water.

Rowell found that the corvina had spent part of their first year of life in brackish water in the mouth of the river, and the totoaba had spent up to their first three years in brackish water.

She said, "It shows these fish chose the brackish water habitat -- and we’ve taken it away."

"The totoaba are endangered for two reasons," she said. "The primary reason is being overfished. The second reason is that their nursery grounds have shrunk drastically. The Colorado River no longer makes it down to the Gulf except in flood years." She added, "My data say that before the dams, totoaba lived in a brackish water estuary for several years."

Rowell said, "Freshwater rivers are part of a larger system -- they don’t just stop at the edge of the continents. Rivers have a large influence on coastal marine ecosystems. These economically important marine fish were affected when we turned off the water upstream."

Mari N. Jensen | University of Arizona
Further information:
http://uanews.org/cgi-bin/WebObjects/UANews.woa/5/wa/SRStoryDetails?ArticleID=9292

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>