Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Choice of food helps hungry caterpillar

08.06.2004


For one caterpillar, eating an unusual fruit may be the key to an easy food supply and protection against parasites, according to a team of Penn State researchers.


Heliothis subflexa caterpillar on partially eaten fruit inside Physalis angulata calyx.
Credit: Penn State, Andrew Sourakov and Consuelo M. De Moraes


Predatory wasp, Cardiochiles nigriceps on branch of Physalis angulata. Heliothis subflexa caterpillar on partially eaten fruit inside Physalis angulata calyx hangs below branch.
Credit: Penn State, Andrew Sourakov and Consuelo M. De Moraes



The Heliothis subflexa caterpillar is a specialist herbivore that eats only the fruit of Physalis plants which include ground cherry, tomatillo and Chinese lantern. H. subflexa’s choice of food turns out to have unusual benefits in the three-way struggle between herbivores, their predatory wasps and the plants.

"We know that many plants produce volatile chemicals when chewed on by herbivores and that some of these chemicals attract wasps that parasitize the caterpillars," says Dr. Consuelo M De Moraes, assistant professor of entomology. "However, when we investigated H. subflexa’s spit, it did not contain volicitin, a chemical elicitor that signals the plant to produce the volatile chemicals that attract wasps."


H. subflexa somehow does not turn on the plant’s defenses.

"The co-evolution of plants, herbivores and their parasitoids is complex," says Dr. Mark C. Mescher, assistant professor of biology. "We do not fully understand how the system is influenced by the interactions of the three players and we need to understand this to develop more environmentally friendly ways to deal with agricultural products and pests."


Thinking the absence of elicitor was related to the caterpillar’s food, the researchers fed H. subflexa on a different food source and fed a different caterpillar on Physalis angulata. The Physalis-fed caterpillar did not produce the elicitor either, but H. subflexa, fed on a different food, did produce elicitors.

The researchers report in this week’s online edition of the Proceedings of the National Academy of Sciences that the Physalis angulata fruits used "lack linolenic acid." Linolenic acid is necessary to produce the chemical in caterpillar spit that elicits the production of volatile wasp attracting substances.

Linolenic acid, however, is not just used to make the elicitor, but is a necessary chemical in the growth and maturation of many insects including other caterpillars and wasps.

"Physiologically, we do not know how the caterpillars manage to survive without it in their diet," says Mescher. "It is a process of specialization and we plan to look at this next."

The absence of linolenic acid explains why H. subflexa is the only caterpillar that feeds on Physalis. Other caterpillars forced to feed on the fruit rarely survived and those that did were often deformed. By somehow adapting to the lack of linolenic acid, H. subflexa manages to secure a food supply that only they can eat.

Physalis is characterized by a fruit enclosed in an inflated calyx, forming the Chinese lantern or husk tomato type of fruit. The caterpillar carefully bores a small hole in the calyx because, unlike the fruit, the leaves and flowers of the plant do produce linolenic acid. Caterpillars will often squeeze out of the same hole, even though they have grown.

"A caterpillar will eat three or four fruits during its lifetime," says De Moraes. "Because they are protected by the calyx when feeding, the caterpillars are most likely to be parasitized when moving from one fruit to another."

The absence of linolenic acid in the fruit appears to be passed on to caterpillar. Wasp larvae cannot develop within the caterpillar and so H. subflexa avoids becoming a home for wasp larvae.

The researchers note that the ability of H. subflexa larvae to develop without linolenic acid seems to give them almost exclusive access to Physalis fruit. H. subflexa can also exploit the protection from predators provided by the fruit’s calyx. Combining that protection with the protection afforded by an absence of linolenic acid for parasite development, H. subflexa has a very low level of parasites compared with other caterpillars.

By adapting to a fruit that no other caterpillar wants, H. subflexa has found a niche where life is good. An uncontested food supply, a way to eat the fruit without calling up the plant’s defenses and immunity to parasites make for successful caterpillars.


This work was supported by the National Research Institute of the U.S. Department of Agriculture, the Beckman Foundation, and a David and Lucille Packard Young Investigator Award.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>