Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parting Genomes: UA Biologists Discover Seeds of Speciation

07.06.2004


A University of Arizona graduate student may be the first eyewitness to the birth of a new species. Her new findings, appearing in the June 7, 2004 Proceedings of the National Academy of Science, could help biologists identify and understand the precise genetic changes that lead a species to evolve into two separate species.



Laura K. Reed and her advisor, Regents’ Professor Therese Markow, made the discovery by observing breeding patterns of fruitflies that live among rotting cacti in western deserts. Whether the two closely related fruitfly populations, designated Drosophila mojavensis and Drosophila arizonae, represent one species or two is still debatable among biologists, testament to the Arizona researchers’ assertion that they are in the early stages of diverging into separate species.

The seeds of speciation are sown when distinct factions of a species cease reproducing with one another. When the two groups can no longer interbreed, or prefer not to, they stop exchanging genes and eventually go their own evolutionary ways, forming separate species.


While the evolutionary record is brimming with examples of speciation events, Reed says, biologists haven’t been able to put their finger on just what initiates the reproductive isolation. Several researchers have identified mutant forms of certain genes associated with the inability of fruitflies to hybridize with closely related species, but in all cases those genes were discovered long after the two species diverged. Those genetic changes could have caused the speciation or resulted from it, or they might even be incidental changes that occurred long after the species diverged. The difficulty, Reed explains, is that you have to catch the genetic schism while it’s still brewing.

She and her advisor report that they have managed to do just that. In the wild, D. mojavensis and D. arizonae rarely if ever interbreed, even though their ranges overlap along a broad swath along the northern Mexican coastline. In the lab, researchers can coax successful conjugal visits between members of the two groups. But even under laboratory conditions hybrid crosses aren’t always fruitful. D. mojavensis mothers typically produce healthy offspring after mating with D. arizonae males, but when D. arizonae females mate with D. mojavensis males, all of the resulting hybrid sons are sterile. This partial capacity for interbreeding, Reed says, suggests that these flies are on the verge of evolving to become completely separate species.

Another finding adds support to that notion. Researchers had previously reported that for one strain of D. mojavensis, from Catalina Island, off the southern California coast, mothers always produce sterile sons when crossed to D. arizonae males.

Because the hybrid male sterility trait depends on the mother’s genetic heritage, Reed and Markow concluded that the genetic change—polymorphism, in evolutionary biology parlance—responsible for creating sterile sons must not yet be “fixed,” or firmly established in D. mojavensis populations. And that is a telltale sign that the change was recent.

Reed wanted to know just how deeply the polymorphism causing male sterility had suffused Catalina Island D. mojavensis populations. In other words, do all or just some of the Catalina Island mothers produce sterile sons when mated to D. arizonae males? When she did the experiment, she found that only about half the crosses resulted in sterile sons. That result implies that only half the females in the Catalina Island population had the gene (or genes) for hybrid male sterility.

Surprisingly, when she tested D. mojavensis females from other geographic regions, she found that a small fraction of those populations also exhibited the hybrid male sterility polymorphism. “That polymorphism exists in every population I looked at,” Reed said. “It just happens to be that whatever factors are causing sterility are at higher frequencies in the Catalina Island population.”

Further experiments demonstrated that the sterility trait is caused by more than one genetic change. “I think there are many genes—4 or 5 probably, maybe many more,” Reed predicted.

Now that the researchers are hot on the trail of a set of “speciation genes,” their next task will be to identify them. To help toward that endeavor, they plan to take advantage of the newly begun D. mojavensis genome sequencing project, which will provide a complete roadmap of every gene in the species.

Reed reflects upon the implications of the findings. “There’s a huge amount of biodiversity out there, and we don’t know where it comes from. Evolutionary biologists are excited to figure out what causes what we see out there—the relative forces of selection and drift—whether things are adapting to their environment or variation is random.

"Another important component to that is how that variation is partitioned into separate species. Once you’re a separate species, you have an independent evolutionary trajectory to some other species—an independent set of tools, or genetic potential, relative to other species. So this partitioning of genomes is an important cause of the variation we see in nature.”

Paul Muhlrad | University of Arizona
Further information:
http://uanews.org/cgi-bin/WebObjects/UANews.woa/wa/SRStoryDetails?ArticleID=9269

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>